Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Receptor activity-modifying protein dependent and independent activation mechanisms in the coupling of calcitonin gene-related peptide and adrenomedullin receptors to Gs.

  • Michael J Woolley‎ et al.
  • Biochemical pharmacology‎
  • 2017‎

Calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors are heteromers of the calcitonin receptor-like receptor (CLR), a class B G protein-coupled receptor, and one of three receptor activity-modifying proteins (RAMPs). How CGRP and AM activate CLR and how this process is modulated by RAMPs is unclear. We have defined how CGRP and AM induce Gs-coupling in CLR-RAMP heteromers by measuring the effect of targeted mutagenesis in the CLR transmembrane domain on cAMP production, modeling the active state conformations of CGRP and AM receptors in complex with the Gs C-terminus and conducting molecular dynamics simulations in an explicitly hydrated lipidic bilayer. The largest effects on receptor signaling were seen with H295A5.40b, I298A5.43b, L302A5.47b, N305A5.50b, L345A6.49b and E348A6.52b, F349A6.53b and H374A7.47b (class B numbering in superscript). Many of these residues are likely to form part of a group in close proximity to the peptide binding site and link to a network of hydrophilic and hydrophobic residues, which undergo rearrangements to facilitate Gs binding. Residues closer to the extracellular loops displayed more pronounced RAMP or ligand-dependent effects. Mutation of H3747.47b to alanine increased AM potency 100-fold in the CGRP receptor. The molecular dynamics simulation showed that TM5 and TM6 pivoted around TM3. The data suggest that hydrophobic interactions are more important for CLR activation than other class B GPCRs, providing new insights into the mechanisms of activation of this class of receptor. Furthermore the data may aid in the understanding of how RAMPs modulate the signaling of other class B GPCRs.


CGRP and the Calcitonin Receptor are Co-Expressed in Mouse, Rat and Human Trigeminal Ganglia Neurons.

  • Tayla A Rees‎ et al.
  • Frontiers in physiology‎
  • 2022‎

The neuropeptide calcitonin gene-related peptide (CGRP) is expressed in the trigeminal ganglia, a key site in craniofacial pain and migraine. CGRP potently activates two receptors: the CGRP receptor and the AMY1 receptor. These receptors are heterodimers consisting of receptor activity-modifying protein 1 (RAMP1) with either the calcitonin receptor-like receptor (CLR) to form the CGRP receptor or the calcitonin receptor (CTR) to form the AMY1 receptor. The expression of the CGRP receptor in trigeminal ganglia has been described in several studies; however, there is comparatively limited data available describing AMY1 receptor expression and in which cellular subtypes it is found. This research aimed to determine the relative distributions of the AMY1 receptor subunit, CTR, and CGRP in neurons or glia in rat, mouse and human trigeminal ganglia. Antibodies against CTR, CGRP and neuronal/glial cell markers were applied to trigeminal ganglia sections to investigate their distribution. CTR-like and CGRP-like immunoreactivity were observed in both discrete and overlapping populations of neurons. In rats and mice, 30-40% of trigeminal ganglia neurons displayed CTR-like immunoreactivity in their cell bodies, with approximately 78-80% of these also containing CGRP-like immunoreactivity. Although human cases were more variable, a similar overall pattern of CTR-like immunoreactivity to rodents was observed in the human trigeminal ganglia. CTR and CGRP appeared to be primarily colocalized in small to medium sized neurons, suggesting that colocalization of CTR and CGRP may occur in C-fiber neurons. CGRP-like or CTR-like immunoreactivity were not typically observed in glial cells. Western blotting confirmed that CTR was expressed in the trigeminal ganglia of all three species. These results confirm that CTR is expressed in trigeminal ganglia neurons. The identification of populations of neurons that express both CGRP and CTR suggests that CGRP could act in an autocrine manner through a CTR-based receptor, such as the AMY1 receptor. Overall, this suggests that a trigeminal ganglia CTR-based receptor may be activated during migraine and could therefore represent a potential target to develop treatments for craniofacial pain and migraine.


A narrative review of the calcitonin peptide family and associated receptors as migraine targets: Calcitonin gene-related peptide and beyond.

  • Michael L Garelja‎ et al.
  • Headache‎
  • 2022‎

To summarize the pharmacology of the calcitonin peptide family of receptors and explore their relationship to migraine and current migraine therapies.


Structural Basis for Receptor Activity-Modifying Protein-Dependent Selective Peptide Recognition by a G Protein-Coupled Receptor.

  • Jason M Booe‎ et al.
  • Molecular cell‎
  • 2015‎

Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind related GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. The structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.


Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25.

  • Debbie L Hay‎ et al.
  • British journal of pharmacology‎
  • 2018‎

The calcitonin/CGRP family of peptides includes calcitonin, α and β CGRP, amylin, adrenomedullin (AM) and adrenomedullin 2/intermedin (AM2/IMD). Their receptors consist of one of two GPCRs, the calcitonin receptor (CTR) or the calcitonin receptor-like receptor (CLR). Further diversity arises from heterodimerization of these GPCRs with one of three receptor activity-modifying proteins (RAMPs). This gives the CGRP receptor (CLR/RAMP1), the AM1 and AM2 receptors (CLR/RAMP2 or RAMP3) and the AMY1, AMY2 and AMY3 receptors (CTR/RAMPs1-3 complexes, respectively). Apart from the CGRP receptor, there are only peptide antagonists widely available for these receptors, and these have limited selectivity, thus defining the function of each receptor in vivo remains challenging. Further challenges arise from the probable co-expression of CTR with the CTR/RAMP complexes and species-dependent splice variants of the CTR (CT(a) and CT(b) ). Furthermore, the AMY1(a) receptor is activated equally well by both amylin and CGRP, and the preferred receptor for AM2/IMD has been unclear. However, there are clear therapeutic rationales for developing agents against the various receptors for these peptides. For example, many agents targeting the CGRP system are in clinical trials, and pramlintide, an amylin analogue, is an approved therapy for insulin-requiring diabetes. This review provides an update on the pharmacology of the calcitonin family of peptides by members of the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology and colleagues.


Pharmacological characterisation of erenumab, Aimovig, at two calcitonin gene-related peptide responsive receptors.

  • Michael L Garelja‎ et al.
  • British journal of pharmacology‎
  • 2024‎

Calcitonin gene-related peptide (CGRP) is involved in migraine pathophysiology. CGRP can signal through two receptors. The canonical CGRP receptor comprises the calcitonin receptor-like receptor and receptor activity-modifying protein 1 (RAMP1); the AMY1 receptor comprises the calcitonin receptor with RAMP1. Drugs that reduce CGRP activity, such as receptor antagonists, are approved for the treatment and prevention of migraine. Despite being designed to target the canonical CGRP receptor, emerging evidence suggests that these antagonists, including erenumab (a monoclonal antibody antagonist) can also antagonise the AMY1 receptor. However, it is difficult to estimate its selectivity because direct comparisons between receptors under matched conditions have not been made. We therefore characterised erenumab at both CGRP-responsive receptors with multiple ligands, including αCGRP and βCGRP.


Receptor Activity-modifying Proteins 2 and 3 Generate Adrenomedullin Receptor Subtypes with Distinct Molecular Properties.

  • Harriet A Watkins‎ et al.
  • The Journal of biological chemistry‎
  • 2016‎

Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function.


Characterization of the structure of RAMP1 by mutagenesis and molecular modeling.

  • John Simms‎ et al.
  • Biophysical journal‎
  • 2006‎

Receptor activity modifying proteins (RAMPs) are a family of single-pass transmembrane proteins that dimerize with G-protein-coupled receptors. They may alter the ligand recognition properties of the receptors (particularly for the calcitonin receptor-like receptor, CLR). Very little structural information is available about RAMPs. Here, an ab initio model has been generated for the extracellular domain of RAMP1. The disulfide bond arrangement (Cys27-Cys82, Cys40-Cys72, and Cys57-Cys104) was determined by site-directed mutagenesis. The secondary structure (alpha-helices from residues 29-51, 60-80, and 87-100) was established from a consensus of predictive routines. Using these constraints, an assemblage of 25,000 structures was constructed and these were ranked using an all-atom statistical potential. The best 1000 conformations were energy minimized. The lowest scoring model was refined by molecular dynamics simulation. To validate our strategy, the same methods were applied to three proteins of known structure; PDB:1HP8, PDB:1V54 chain H (residues 21-85), and PDB:1T0P. When compared to the crystal structures, the models had root mean-square deviations of 3.8 A, 4.1 A, and 4.0 A, respectively. The model of RAMP1 suggested that Phe93, Tyr100, and Phe101 form a binding interface for CLR, whereas Trp74 and Phe92 may interact with ligands that bind to the CLR/RAMP1 heterodimer.


A comparison of the actions of BIBN4096BS and CGRP(8-37) on CGRP and adrenomedullin receptors expressed on SK-N-MC, L6, Col 29 and Rat 2 cells.

  • Debbie L Hay‎ et al.
  • British journal of pharmacology‎
  • 2002‎

1. The ability of the CGRP antagonist BIBN4096BS to antagonize CGRP and adrenomedullin has been investigated on cell lines endogenously expressing receptors of known composition. 2. On human SK-N-MC cells (expressing human calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1)), BIBN4096BS had a pA(2) of 9.95 although the slope of the Schild plot (1.37 +/- 0.16) was significantly greater than 1. 3. On rat L6 cells (expressing rat CRLR and RAMP1), BIBN4096BS had a pA(2) of 9.25 and a Schild slope of 0.89 +/- 0.05, significantly less than 1. 4. On human Colony (Col) 29 cells, CGRP(8-37) had a significantly lower pA(2) than on SK-N-MC cells (7.34 +/- 0.19 (n = 7) compared to 8.35 +/- 0.18, (n = 6)). BIBN4096BS had a pA(2) of 9.98 and a Schild plot slope of 0.86 +/- 0.19 that was not significantly different from 1. At concentrations in excess of 3 nM, it was less potent on Col 29 cells than on SK-N-MC cells. 5. On Rat 2 cells, expressing rat CRLR and RAMP2, BIBN4096BS was unable to antagonize adrenomedullin at concentrations up to 10 microM. CGRP(8-37) had a pA(2) of 6.72 against adrenomedullin. 6. BIBN4096BS shows selectivity for the human CRLR/RAMP1 combination compared to the rat counterpart. It can discriminate between the CRLR/RAMP1 receptor expressed on SK-N-MC cells and the CGRP-responsive receptor expressed by the Col 29 cells used in this study. Its slow kinetics may explain its apparent 'non-competitive' behaviour. At concentrations of up to 10 micro M, it has no antagonist actions at the adrenomedullin, CRLR/RAMP2 receptor, unlike CGRP(8-37).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: