Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Myogenic potential of whole bone marrow mesenchymal stem cells in vitro and in vivo for usage in urinary incontinence.

  • Monica Gunetti‎ et al.
  • PloS one‎
  • 2012‎

Urinary incontinence, defined as the complaint of any involuntary loss of urine, is a pathological condition, which affects 30% females and 15% males over 60, often following a progressive decrease of rhabdosphincter cells due to increasing age or secondary to damage to the pelvic floor musculature, connective tissue and/or nerves. Recently, stem cell therapy has been proposed as a source for cell replacement and for trophic support to the sphincter. To develop new therapeutic strategies for urinary incontinence, we studied the interaction between mesenchymal stem cells (MSCs) and muscle cells in vitro; thereafter, aiming at a clinical usage, we analyzed the supporting role of MSCs for muscle cells in vitro and in in vivo xenotransplantation. MSCs can express markers of the myogenic cell lineages and give rise, under specific cell culture conditions, to myotube-like structures. Nevertheless, we failed to obtain mixed myotubes both in vitro and in vivo. For in vivo transplantation, we tested a new protocol to collect human MSCs from whole bone marrow, to get larger numbers of cells. MSCs, when transplanted into the pelvic muscles close to the external urethral sphincter, survived for a long time in absence of immunosuppression, and migrated into the muscle among fibers, and towards neuromuscular endplates. Moreover, they showed low levels of cycling cells, and did not infiltrate blood vessels. We never observed formation of cell masses suggestive of tumorigenesis. Those which remained close to the injection site showed an immature phenotype, whereas those in the muscle had more elongated morphologies. Therefore, MSCs are safe and can be easily transplanted without risk of side effects in the pelvic muscles. Further studies are needed to elucidate their integration into muscle fibers, and to promote their muscular transdifferentiation either before or after transplantation.


Role of citron kinase in dendritic morphogenesis of cortical neurons.

  • Ferdinando Di Cunto‎ et al.
  • Brain research bulletin‎
  • 2003‎

Small GTPases of the rho family regulate the extensive rearrangements of the cytoskeleton that characterize neuronal differentiation. Citron kinase is a target molecule for activated rhoA, previously implicated in control of cytokinesis. We have found that, in addition, it could play an important role in modulating the extension of neuronal processes. Using constitutively active and dominant negative mutants, we showed that citron kinase is involved in the morphologic differentiation of N1E-115 neuroblastoma cells induced by serum starvation. More importantly, quantitative analysis of citron kinase knockout cerebral cortex displayed that this molecule may differentially regulate the morphology of the dendritic compartment in corticocollicular versus callosally-projecting pyramidal neurons.


Differential distribution of NADPH-diaphorase histochemistry in human cerebral cortex.

  • Diego Garbossa‎ et al.
  • Brain research‎
  • 2005‎

Beta-nicotinamidedinucleotide phosphate diaphorase (NADPH-d) colocalizes with NOS in the central nervous system. Two types of NADPH-d-positive neurons are present in the primate cerebral cortex: type 1, intensely and Golgi-like labeled neurons, a subset of GABAergic interneurons; type 2, lightly labeled neurons (divided into two subclasses, a first one having a lightly stained cell body bearing only one short process, and a second one showing intense NADPH-d staining with short processes extending radially). We have analyzed the distribution of NADPH-d activity in human frontal, temporal, and occipital cortical areas, finding remarkable laminar and interareal differences in cell size and distribution of the different cell types. There was a clear bias for type 1 neurons in infragranular layers in all areas considered; both in supra- and infragranular layers, their density was highest in frontal, and lowest in temporal cortex. The density of type 2 neurons was lower supragranularly in temporal cortex and infragranularly in occipital cortex. The overall density of type 2 cells was remarkably higher in occipital cortex than in the temporal and frontal ones. Type 1 neurons were significantly larger than type 2, and were smaller in the supragranular than in the infragranular subzone in occipital and temporal cortex. Type 1 cells were significantly larger in frontal cortex than in occipital and temporal cortex, and type 2 cells were significantly smaller in occipital than in temporal and frontal cortex. These area-related differences might reflect differences between heterotypic and homotypic cortex in the regulation of cortical blood flow.


TLQP Peptides in Amyotrophic Lateral Sclerosis: Possible Blood Biomarkers with a Neuroprotective Role.

  • Carla Brancia‎ et al.
  • Neuroscience‎
  • 2018‎

While the VGF-derived TLQP peptides have been shown to prevent neuronal apoptosis, and to act on synaptic strengthening, their involvement in Amyotrophic Lateral Sclerosis (ALS) remains unclarified. We studied human ALS patients' plasma (taken at early to late disease stages) and primary fibroblast cultures (patients vs controls), in parallel with SOD1-G93A transgenic mice (taken at pre-, early- and late symptomatic stages) and the mouse motor neuron cell line (NSC-34) treated with Sodium Arsenite (SA) to induce oxidative stress. TLQP peptides were measured by enzyme-linked immunosorbent assay, in parallel with gel chromatography characterization, while their localization was studied by immunohistochemistry. In controls, TLQP peptides, including forms compatible with TLQP-21 and 62, were revealed in plasma and spinal cord motor neurons, as well as in fibroblasts and NSC-34 cells. TLQP peptides were reduced in ALS patients' plasma starting in the early disease stage (14% of controls) and remaining so at the late stage (16% of controls). In mice, a comparable pattern of reduction was shown (vs wild type), in both plasma and spinal cord already in the pre-symptomatic phase (about 26% and 70%, respectively). Similarly, the levels of TLQP peptides were reduced in ALS fibroblasts (31% of controls) and in the NSC-34 treated with Sodium Arsenite (53% of decrease), however, the exogeneous TLQP-21 improved cell viability (SA-treated cells with TLQP-21, vs SA-treated cells only: about 83% vs. 75%). Hence, TLQP peptides, reduced upon oxidative stress, are suggested as blood biomarkers, while TLQP-21 exerts a neuroprotective activity.


A new protein curbs the hypertrophic effect of myostatin inhibition, adding remarkable endurance to motor performance in mice.

  • Marina Boido‎ et al.
  • PloS one‎
  • 2020‎

Current efforts to improve muscle performance are focused on muscle trophism via inhibition of the myostatin pathway: however they have been unsuccessful in the clinic to date. In this study, a novel protein has been created by combining the soluble activin receptor, a strong myostatin inhibitor, to the C-terminal agrin nLG3 domain (ActR-Fc-nLG3) involved in the development and maintenance of neuromuscular junctions. Both domains are connected via the constant region of an Igg1 monoclonal antibody. Surprisingly, young male mice treated with ActR-Fc-nLG3 showed a remarkably increased endurance in the rotarod test, significantly longer than the single domain compounds ActR-Fc and Fc-nLG3 treated animals. This increase in endurance was accompanied by only a moderate increase in body weights and wet muscle weights of ActR-Fc-nLG3 treated animals and were lower than expected. The myostatin inhibitor ActR-Fc induced, as expected, a highly significant increase in body and muscle weights compared to control animals and ActR-Fc-nLG3 treated animals. Moreover, the prolonged endurance effect was not observed when ActR-Fc and Fc-nLG3 were dosed simultaneously as a mixture and the body and muscle weights of these animals were very similar to ActR-Fc treated animals, indicating that both domains need to be on one molecule. Muscle morphology induced by ActR-Fc-nLG3 did not appear to be changed however, close examination of the neuromuscular junction showed significantly increased acetylcholine receptor surface area for ActR-Fc-nLG3 treated animals compared to controls. This result is consistent with published observations that endurance training in rats increased acetylcholine receptor quantity at neuromuscular junctions and provide evidence that improving nerve-muscle interaction could be an important factor for sustaining long term muscle activity.


Mesenchymal Stem Cell Treatment Perspectives in Peripheral Nerve Regeneration: Systematic Review.

  • Andrea Lavorato‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Traumatic peripheral nerve lesions affect hundreds of thousands of patients every year; their consequences are life-altering and often devastating and cause alterations in movement and sensitivity. Spontaneous peripheral nerve recovery is often inadequate. In this context, nowadays, cell therapy represents one of the most innovative approaches in the field of nerve repair therapies. The purpose of this systematic review is to discuss the features of different types of mesenchymal stem cells (MSCs) relevant for peripheral nerve regeneration after nerve injury. The published literature was reviewed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A combination of the keywords "nerve regeneration", "stem cells", "peripheral nerve injury", "rat", and "human" were used. Additionally, a "MeSH" research was performed in PubMed using the terms "stem cells" and "nerve regeneration". The characteristics of the most widely used MSCs, their paracrine potential, targeted stimulation, and differentiation potentials into Schwann-like and neuronal-like cells are described in this paper. Considering their ability to support and stimulate axonal growth, their remarkable paracrine activity, their presumed differentiation potential, their extremely low immunogenicity, and their high survival rate after transplantation, ADSCs appear to be the most suitable and promising MSCs for the recovery of peripheral nerve lesion. Clinical considerations are finally reported.


Organotypic spinal cord cultures: An in vitro 3D model to preliminary screen treatments for spinal muscular atrophy.

  • Marina Boido‎ et al.
  • European journal of histochemistry : EJH‎
  • 2021‎

Spinal muscular atrophy (SMA) is a severe neuromuscular disease affecting children, due to mutation/deletion of survival motor neuron 1 (SMN1) gene. The lack of functional protein SMN determines motor neuron (MN) degeneration and skeletal muscle atrophy, leading to premature death due to respiratory failure. Nowadays, the Food and Drug Administration approved the administration of three drugs, aiming at increasing the SMN production: although assuring noteworthy results, all these therapies show some non-negligible limitations, making essential the identification of alternative/synergistic therapeutic strategies. To offer a valuable in vitro experimental model for easily performing preliminary screenings of alternative promising treatments, we optimized an organotypic spinal cord culture (derived from murine spinal cord slices), which well recapitulates the pathogenetic features of SMA. Then, to validate the model, we tested the effects of human Mesenchymal Stem Cells (hMSCs) or murine C2C12 cells (a mouse skeletal myoblast cell line) conditioned media: 1/3 of conditioned medium (obtained from either hMSCs or C2C12 cells) was added to the conventional medium of the organotypic culture and maintained for 7 days. Then the slices were fixed and immunoreacted to evaluate the MN survival. In particular we observed that the C2C12 and hMSCs conditioned media positively influenced the MN soma size and the axonal length respectively, without modulating the glial activation. These data suggest that trophic factors released by MSCs or muscular cells can exert beneficial effects, by acting on different targets, and confirm the reliability of the model. Overall, we propose the organotypic spinal cord culture as an excellent tool to preliminarily screen molecules and drugs before moving to in vivo models, in this way partly reducing the use of animals and the costs.


Preconditioning triggered by carbon monoxide (CO) provides neuronal protection following perinatal hypoxia-ischemia.

  • Cláudia S F Queiroga‎ et al.
  • PloS one‎
  • 2012‎

Perinatal hypoxia-ischemia is a major cause of acute mortality in newborns and cognitive and motor impairments in children. Cerebral hypoxia-ischemia leads to excitotoxicity and necrotic and apoptotic cell death, in which mitochondria play a major role. Increased resistance against major damage can be achieved by preconditioning triggered by subtle insults. CO, a toxic molecule that is also generated endogenously, may have a role in preconditioning as low doses can protect against inflammation and apoptosis. In this study, the role of CO-induced preconditioning on neurons was addressed in vitro and in vivo. The effect of 1 h of CO treatment on neuronal death (plasmatic membrane permeabilization and chromatin condensation) and bcl-2 expression was studied in cerebellar granule cells undergoing to glutamate-induced apoptosis. CO's role was studied in vivo in the Rice-Vannucci model of neonatal hypoxia-ischemia (common carotid artery ligature +75 min at 8% oxygen). Apoptotic cells, assessed by Nissl staining were counted with a stereological approach and cleaved caspase 3-positive profiles in the hippocampus were assessed. Apoptotic hallmarks were analyzed in hippocampal extracts by Western Blot. CO inhibited excitotoxicity-induced cell death and increased Bcl-2 mRNA in primary cultures of neurons. In vivo, CO prevented hypoxia-ischemia induced apoptosis in the hippocampus, limited cytochrome c released from mitochondria and reduced activation of caspase-3. Still, Bcl-2 protein levels were higher in hippocampus of CO pre-treated rat pups. Our results show that CO preconditioning elicits a molecular cascade that limits neuronal apoptosis. This could represent an innovative therapeutic strategy for high-risk cerebral hypoxia-ischemia patients, in particular neonates.


Inhibition of autophagy delays motoneuron degeneration and extends lifespan in a mouse model of spinal muscular atrophy.

  • Antonio Piras‎ et al.
  • Cell death & disease‎
  • 2017‎

Spinal muscular atrophy (SMA) is a recessive autosomal neuromuscular disease, due to homozygous mutations or deletions in the telomeric survival motoneuron gene 1 (SMN1). SMA is characterized by motor impairment, muscle atrophy, and premature death following motor neuron (MN) degeneration. Emerging evidence suggests that dysregulation of autophagy contributes to MN degeneration. We here investigated the role of autophagy in the SMNdelta7 mouse model of SMA II (intermediate form of the disease) which leads to motor impairment by postnatal day 5 (P5) and to death by P13. We first showed by immunoblots that Beclin 1 and LC3-II expression levels increased in the lumbar spinal cord of the SMA pups. Electron microscopy and immunofluorescence studies confirmed that autophagic markers were enhanced in the ventral horn of SMA pups. To clarify the role of autophagy, we administered intracerebroventricularly (at P3) either an autophagy inhibitor (3-methyladenine, 3-MA), or an autophagy inducer (rapamycin) in SMA pups. Motor behavior was assessed daily with different tests: tail suspension, righting reflex, and hindlimb suspension tests. 3-MA significantly improved motor performance, extended the lifespan, and delayed MN death in lumbar spinal cord (10372.36 ± 2716 MNs) compared to control-group (5148.38 ± 94 MNs). Inhibition of autophagy by 3-MA suppressed autophagosome formation, reduced the apoptotic activation (cleaved caspase-3 and Bcl2) and the appearance of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive neurons, underlining that apoptosis and autophagy pathways are intricately intertwined. Therefore, autophagy is likely involved in MN death in SMA II, suggesting that it might represent a promising target for delaying the progression of SMA in humans as well.


Genes and miRNAs as Hurdles and Promoters of Corticospinal Tract Regeneration in Spinal Cord Injury.

  • Marina Boido‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Spinal cord injury (SCI) is a devastating lesion to the spinal cord, which determines the interruption of ascending/descending axonal tracts, the loss of supraspinal control of sensory-motor functions below the injured site, and severe autonomic dysfunctions, dramatically impacting the quality of life of the patients. After the acute inflammatory phase, the progressive formation of the astrocytic glial scar characterizes the acute-chronic phase: such scar represents one of the main obstacles to the axonal regeneration that, as known, is very limited in the central nervous system (CNS). Unfortunately, a cure for SCI is still lacking: the current clinical approaches are mainly based on early vertebral column stabilization, anti-inflammatory drug administration, and rehabilitation programs. However, new experimental therapeutic strategies are under investigation, one of which is to stimulate axonal regrowth and bypass the glial scar. One major issue in axonal regrowth consists of the different genetic programs, which characterize axonal development and maturation. Here, we will review the main hurdles that in adulthood limit axonal regeneration after SCI, describing the key genes, transcription factors, and miRNAs involved in these processes (seen their reciprocal influencing action), with particular attention to corticospinal motor neurons located in the sensory-motor cortex and subjected to axotomy in case of SCI. We will highlight the functional complexity of the neural regeneration programs. We will also discuss if specific axon growth programs, that undergo a physiological downregulation during CNS development, could be reactivated after a spinal cord trauma to sustain regrowth, representing a new potential therapeutic approach.


Exploring the neuroprotective effects of montelukast on brain inflammation and metabolism in a rat model of quinolinic acid-induced striatal neurotoxicity.

  • Margherita Tassan Mazzocco‎ et al.
  • Journal of neuroinflammation‎
  • 2023‎

One intrastriatal administration of quinolinic acid (QA) in rats induces a lesion with features resembling those observed in Huntington's disease. Our aim is to evaluate the effects of the cysteinyl leukotriene receptor antagonist montelukast (MLK), which exhibited neuroprotection in different preclinical models of neurodegeneration, on QA-induced neuroinflammation and regional metabolic functions.


The Isotropic Fractionator as a Tool for Quantitative Analysis in Central Nervous System Diseases.

  • Ivan E Repetto‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2016‎

One major aim in quantitative and translational neuroscience is to achieve a precise and fast neuronal counting method to work on high throughput scale to obtain reliable results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and non-neuronal cell loss in different models of central nervous system (CNS) pathologies. Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection with quinolinic acid (QA) mimicking human Huntington's disease. All specimens were processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and striatum from QA-treated rats were carefully dissected using a dissection microscope and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining and then for IF. In the ischemic group the cell loss corresponded to the neuronal loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining we could correlate the volume of lesion to the neuronal loss; by IF, we could assess that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic group we observed a reduction of neuronal cells in treated rats, but also evaluated the changes in the number of non-neuronal cells in response to the hippocampal damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral striatum. This neuronal cell loss was not related to a drastic change in the total number of cells, being overcome by the increase in non-neuronal cells, thus suggesting that excitotoxic damage in the striatum strongly activates inflammation and glial proliferation. We concluded that the IF method could represent a simple and reliable quantitative technique to evaluate the effects of experimental lesions mimicking human diseases, and to consider the neuroprotective/anti-inflammatory effects of different treatments in the whole brain and also in discrete regions of interest, with the potential to investigate non-neuronal alterations. Moreover, IF could be used in addition or in substitution to classical stereological techniques or TTC staining used so far, since it is fast, precise and easily combined with complex molecular analysis.


Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington's disease mice.

  • Marta Valenza‎ et al.
  • EMBO molecular medicine‎
  • 2015‎

Brain cholesterol biosynthesis and cholesterol levels are reduced in mouse models of Huntington's disease (HD), suggesting that locally synthesized, newly formed cholesterol is less available to neurons. This may be detrimental for neuronal function, especially given that locally synthesized cholesterol is implicated in synapse integrity and remodeling. Here, we used biodegradable and biocompatible polymeric nanoparticles (NPs) modified with glycopeptides (g7) and loaded with cholesterol (g7-NPs-Chol), which per se is not blood-brain barrier (BBB) permeable, to obtain high-rate cholesterol delivery into the brain after intraperitoneal injection in HD mice. We report that g7-NPs, in contrast to unmodified NPs, efficiently crossed the BBB and localized in glial and neuronal cells in different brain regions. We also found that repeated systemic delivery of g7-NPs-Chol rescued synaptic and cognitive dysfunction and partially improved global activity in HD mice. These results demonstrate that cholesterol supplementation to the HD brain reverses functional alterations associated with HD and highlight the potential of this new drug-administration route to the diseased brain.


G-CSF administration to adult mice stimulates the proliferation of microglia but does not modify the outcome of ischemic injury.

  • Alice Bartolini‎ et al.
  • Neurobiology of disease‎
  • 2011‎

Recent evidence suggests that adult bone marrow stem cells reduce tissue damage and promote repair following CNS ischemic injury. Since granulocyte-colony stimulating factor (G-CSF) mobilizes hematopoietic stem cells to the circulating compartment, here we tested whether administration of this drug modifies the outcome of a permanent occlusion of the middle cerebral artery in adult mice. To elucidate the behavior and fate of blood-borne cells in the ischemic brain, we produced chimeric animals, in which hematopoietic derivatives are genetically tagged. G-CSF administration enhances the proliferation of microglia in the uninjured CNS but has no effect on the amount of hematopoietic cells that infiltrate the ischemic tissue and on the size of the lesion. The blood-borne elements acquire different mesodermal identities but fail to adopt neural phenotypes, even though they occasionally fuse with Purkinje neurons. These results indicate that G-CSF treatment does not exert a significant beneficial effect on the ischemic injury.


Experimentally-induced microencephaly: effects on cortical neurons.

  • Diego Garbossa‎ et al.
  • Brain research bulletin‎
  • 2003‎

Genetic and epigenetic factors may alter the normal development of cerebral cortex, producing laminar and cellular abnormalities and heterotopiae, major causes of juvenile, drug-resistant epilepsy. Experimentally-induced migration disorders provide interesting insights in the mechanisms of the determination of neuronal phenotype and connectivity, of congenital cortical dysgenesis and the pathophysiology of associated neurological disorders, such as epilepsy. We investigated the effects of E14 administration of methylazoxymethanol acetate (MAM), which induces microencephaly by ablating dividing cells. Brains from newborn and adult rats were reacted for NADPH-d and CO histochemistry. Moreover, callosally-projecting neurons were retrogradely labeled with DiI at P9 or with BDA in adults. MAM-treated rats displayed a remarkable reduction in cortical thickness, mainly due to reduction in layer IV and in supragranular layers. Heterotopic nodules appeared in the supragranular layers and in the hippocampus. CO-positive barrels in somatosensory cortex were almost absent. The distribution of NADPH-d-positive neurons was regular, but they were rare in heterotopic nodules. Callosally-projecting neurons displayed abnormal orientation of the apical dendrite and increase in the basal dendritic length. Alterations in the dendritic arborization of pyramidal neurons may be one of the substrates for the increased sensitivity to drugs which induce epileptic seizures in these animals.


Increasing Agrin Function Antagonizes Muscle Atrophy and Motor Impairment in Spinal Muscular Atrophy.

  • Marina Boido‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2018‎

Spinal muscular atrophy (SMA) is a pediatric genetic disease, characterized by motor neuron (MN) death, leading to progressive muscle weakness, respiratory failure, and, in the most severe cases, to death. Abnormalities at the neuromuscular junction (NMJ) have been reported in SMA, including neurofilament (NF) accumulation at presynaptic terminals, immature and smaller than normal endplates, reduced transmitter release, and, finally, muscle denervation. Here we have studied the role of agrin in SMAΔ7 mice, the experimental model of SMAII. We observed a 50% reduction in agrin expression levels in quadriceps of P10 SMA mice compared to age-matched WT controls. To counteract such condition, we treated SMA mice from birth onwards with therapeutic agrin biological NT-1654, an active splice variant of agrin retaining synaptogenic properties, which is also resistant to proteolytic cleavage by neurotrypsin. Mice were analyzed for behavior, muscle and NMJ histology, and survival. Motor behavior was significantly improved and survival was extended by treatment of SMA mice with NT-1654. At P10, H/E-stained sections of the quadriceps, a proximal muscle early involved in SMA, showed that NT-1654 treatment strongly prevented the size decrease of muscle fibers. Studies of NMJ morphology on whole-mount diaphragm preparations revealed that NT-1654-treated SMA mice had more mature NMJs and reduced NF accumulation, compared to vehicle-treated SMA mice. We conclude that increasing agrin function in SMA has beneficial outcomes on muscle fibers and NMJs as the agrin biological NT-1654 restores the crosstalk between muscle and MNs, delaying muscular atrophy, improving motor performance and extending survival.


Growth hormone-releasing hormone antagonist MIA-602 inhibits inflammation induced by SARS-CoV-2 spike protein and bacterial lipopolysaccharide synergism in macrophages and human peripheral blood mononuclear cells.

  • Giuseppina Granato‎ et al.
  • Frontiers in immunology‎
  • 2023‎

COVID-19 is characterized by an excessive inflammatory response and macrophage hyperactivation, leading, in severe cases, to alveolar epithelial injury and acute respiratory distress syndrome. Recent studies have reported that SARS-CoV-2 spike (S) protein interacts with bacterial lipopolysaccharide (LPS) to boost inflammatory responses in vitro, in macrophages and peripheral blood mononuclear cells (PBMCs), and in vivo. The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting pituitary GH release, exerts many peripheral functions, acting as a growth factor in both malignant and non-malignant cells. GHRH antagonists, in turn, display potent antitumor effects and antinflammatory activities in different cell types, including lung and endothelial cells. However, to date, the antinflammatory role of GHRH antagonists in COVID-19 remains unexplored. Here, we examined the ability of GHRH antagonist MIA-602 to reduce inflammation in human THP-1-derived macrophages and PBMCs stimulated with S protein and LPS combination. Western blot and immunofluorescence analysis revealed the presence of GHRH receptor and its splice variant SV1 in both THP-1 cells and PBMCs. Exposure of THP-1 cells to S protein and LPS combination increased the mRNA levels and protein secretion of TNF-α and IL-1β, as well as IL-8 and MCP-1 gene expression, an effect hampered by MIA-602. Similarly, MIA-602 hindered TNF-α and IL-1β secretion in PBMCs and reduced MCP-1 mRNA levels. Mechanistically, MIA-602 blunted the S protein and LPS-induced activation of inflammatory pathways in THP-1 cells, such as NF-κB, STAT3, MAPK ERK1/2 and JNK. MIA-602 also attenuated oxidative stress in PBMCs, by decreasing ROS production, iNOS and COX-2 protein levels, and MMP9 activity. Finally, MIA-602 prevented the effect of S protein and LPS synergism on NF-кB nuclear translocation and activity. Overall, these findings demonstrate a novel antinflammatory role for GHRH antagonists of MIA class and suggest their potential development for the treatment of inflammatory diseases, such as COVID-19 and related comorbidities.


VGF Protein and Its C-Terminal Derived Peptides in Amyotrophic Lateral Sclerosis: Human and Animal Model Studies.

  • Carla Brancia‎ et al.
  • PloS one‎
  • 2016‎

VGF mRNA is widely expressed in areas of the nervous system known to degenerate in Amyotrophic Lateral Sclerosis (ALS), including cerebral cortex, brainstem and spinal cord. Despite certain VGF alterations are reported in animal models, little information is available with respect to the ALS patients. We addressed VGF peptide changes in fibroblast cell cultures and in plasma obtained from ALS patients, in parallel with spinal cord and plasma samples from the G93A-SOD1 mouse model. Antisera specific for the C-terminal end of the human and mouse VGF proteins, respectively, were used in immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), while gel chromatography and HPLC/ESI-MS/MS were used to identify the VGF peptides present. Immunoreactive VGF C-terminus peptides were reduced in both fibroblast and plasma samples from ALS patients in an advanced stage of the disease. In the G93A-SOD1 mice, the same VGF peptides were also decreased in plasma in the late-symptomatic stage, while showing an earlier down-regulation in the spinal cord. In immunohistochemistry, a large number of gray matter structures were VGF C-terminus immunoreactive in control mice (including nerve terminals, axons and a few perikarya identified as motoneurons), with a striking reduction already in the pre-symptomatic stage. Through gel chromatography and spectrometry analysis, we identified one form likely to be the VGF precursor as well as peptides containing the NAPP- sequence in all tissues studied, while in the mice and fibroblasts, we revealed also AQEE- and TLQP- peptides. Taken together, selective VGF fragment depletion may participate in disease onset and/or progression of ALS.


Selective vulnerability of spinal and cortical motor neuron subpopulations in delta7 SMA mice.

  • Paolo d'Errico‎ et al.
  • PloS one‎
  • 2013‎

Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.


Evolutionary appearance of von Economo's neurons in the mammalian cerebral cortex.

  • Franco Cauda‎ et al.
  • Frontiers in human neuroscience‎
  • 2014‎

von Economo's neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the "social brain." VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain. However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the "global Workspace" architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication) between salience-related insular and cingulate and other widely separated brain areas. Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the functional magnetic resonance imaging data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental investigations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: