Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

Transitions at CpG dinucleotides, geographic clustering of TP53 mutations and food availability patterns in colorectal cancer.

  • Fabio Verginelli‎ et al.
  • PloS one‎
  • 2009‎

Colorectal cancer is mainly attributed to diet, but the role exerted by foods remains unclear because involved factors are extremely complex. Geography substantially impacts on foods. Correlations between international variation in colorectal cancer-associated mutation patterns and food availabilities could highlight the influence of foods on colorectal mutagenesis.


Novel insulin receptor substrate 1 and 2 variants in breast and colorectal cancer.

  • Diana Liberata Esposito‎ et al.
  • Oncology reports‎
  • 2013‎

The insulin/insulin-like growth factor pathway is involved in breast and colorectal cancer (CRC) development. In the present study, we analyzed the coding region and short intron-exon borders of the insulin receptor substrate 1 and 2 (IRS‑1 and IRS‑2) genes in 12 cell lines derived from breast cancer (BC), 14 cell lines derived from CRC and 33 primary CRCs. The nucleotide variants identified in BC were 3 in IRS‑1, 1 of which (p.Arg267Cys) was novel and with a pathogenic potential as predicted by in silico analysis and 6 in IRS‑2. Twenty‑one variants in IRS‑1 and 18 in IRS‑2 were identified in the CRC samples. These included 11 novel IRS‑1 variants detected exclusively in CRCs, which included 5 missense (p.Pro559Leu, p.Gln655His, p.Asp1014Gly, p.Asp1181His and pPro1203Ser) with a pathogenic potential as predicted by in silico analysis, 2 frameshifts predicted to generate a truncated protein, 1 splice-site mutation and 3 silent variants. In the CRC samples we also identified 7 novel IRS‑2 variants, including 4 missense variants, which included 2 (p.Asp782Asn and p.Gly1230Ser) with a pathogenic potential as predicted by in silico analysis, 2 frame insertion mutations and 1 silent variant. Most of the novel IRS‑1 and IRS‑2 variants may be involved in the modulation of IRS-1 or IRS‑2 functions and could be relevant to breast and colorectal tumorigenesis.


Synthesis, in vitro evaluation, and molecular modeling investigation of benzenesulfonimide peroxisome proliferator-activated receptors α antagonists.

  • Alessandra Ammazzalorso‎ et al.
  • European journal of medicinal chemistry‎
  • 2016‎

Recent evidences suggest a moderate activation of Peroxisome Proliferator-Activated Receptors (PPARs) could be favorable in metabolic diseases, reducing side effects given from full agonists. PPAR partial agonists and antagonists represent, to date, interesting tools to better elucidate biological processes modulated by these receptors. In this work are reported new benzenesulfonimide compounds able to block PPARα, synthesized and tested by transactivation assays and gene expression analysis. Some of these compounds showed a dose-dependent antagonistic behavior on PPARα, submicromolar potency, different profiles of selectivity versus PPARγ, and a repressive effect on CPT1A expression. Dockings and molecular dynamics on properly selected benzenesulfonimide derivatives furnished fresh insights into the molecular determinant most likely responsible for PPARα antagonism.


The Selective Acetamidine-Based iNOS Inhibitor CM544 Reduces Glioma Cell Proliferation by Enhancing PARP-1 Cleavage In Vitro.

  • Marialucia Gallorini‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Gliomas are the most aggressive adult primary brain tumors. Expression of inducible Nitric Oxide Synthase has been reported as a hallmark of chemoresistance in gliomas and several studies have reported that inhibition of inducible Nitric Oxide Synthase could be related to a decreased proliferation of glioma cells. The present work was to analyze the molecular effects of the acetamidine derivative compound 39 (formally CM544, N-(3-{[(1-iminioethyl)amino]methyl}benzyl) prolinamide dihydrochloride), a newly synthetized iNOS inhibitor, in a C6 rat glioma cell model. There is evidence of CM544 selective binding to the iNOS, an event that triggers the accumulation of ROS/RNS, the expression of Nrf-2 and the phosphorylation of MAPKs after 3 h of treatment. In the long run, CM544 leads to the dephosphorylation of p38 and to a massive cleavage of PARP-1, confirming the block of C6 rat glioma cell proliferation in the G1/S checkpoint and the occurrence of necrotic cell death.


Design, synthesis and biological activity of selective hCAs inhibitors based on 2-(benzylsulfinyl)benzoic acid scaffold.

  • Giulia Rotondi‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2019‎

A large library of derivatives based on the scaffold of 2-(benzylsulfinyl)benzoic acid were synthesised and tested as atypical inhibitors against four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). The exploration of the chemical space around the main functional groups led to the discovery of selective hCA IX inhibitors in the micromolar/nanomolar range, thus establishing robust structure-activity relationships within this versatile scaffold. HPLC separation of some selected chiral compounds and biological evaluation of the corresponding enantiomers was performed along with molecular modelling studies on the most active derivatives.


Synthesis and evaluation of a large library of nitroxoline derivatives as pancreatic cancer antiproliferative agents.

  • Serena Veschi‎ et al.
  • Journal of enzyme inhibition and medicinal chemistry‎
  • 2020‎

Pancreatic cancer (PC) is one of the deadliest carcinomas and in most cases, which are diagnosed with locally advanced or metastatic disease, current therapeutic options are highly unsatisfactory. Based on the anti-proliferative effects shown by nitroxoline, an old urinary antibacterial agent, we explored a large library of newly synthesised derivatives to unravel the importance of the OH moiety and pyridine ring of the parent compound. The new derivatives showed a valuable anti-proliferative effect and some displayed a greater effect as compared to nitroxoline against three pancreatic cancer cell lines with different genetic profiles. In particular, in silico pharmacokinetic data, clonogenicity assays and selectivity indexes of the most promising compounds showed several advantages for such derivatives, as compared to nitroxoline. Moreover, some of these novel compounds had stronger effects on cell viability and/or clonogenic capacity in PC cells as compared to erlotinib, a targeted agent approved for PC treatment.


Relationship between MUTYH, OGG1 and BRCA1 mutations and mRNA expression in breast and ovarian cancer predisposition.

  • Carmelo Moscatello‎ et al.
  • Molecular and clinical oncology‎
  • 2021‎

The aetiology of breast and ovarian cancer (BC/OC) is multi-factorial. At present, the involvement of base excision repair (BER) glycosylases (MUTYH and OGG1) in BC/OC predisposition is controversial. The present study investigated whether germline mutation status and mRNA expression of two BER genes, MUTHY and OGG1, were correlated with BRCA1 in 59 patients with BC/OC and 50 matched population controls. In addition, to evaluate the relationship between MUTYH, OGG1 and BRCA1, their possible mutual modulation and correlation among mutational spectrum, gene expression and demographic characteristics were evaluated. The results identified 18 MUTYH and OGG1 variants, of which 4 were novel (2 MUTYH and 2 OGG1) in 44 of the 59 patients. In addition, two pathogenic mutations were identified: OGG1 p.Arg46Gln, detected in a patient with BC and a family history of cancer, and MUTYH p.Val234Gly in a patient with OC, also with a family history of cancer. A significant reduced transcript expression in MUTYH was observed (P=0.033) in cases, and in association with the presence of rare variants in the same gene (P=0.030). A significant correlation in the expression of the two BER genes was observed in cases (P=0.004), whereas OGG1 and BRCA1 was significantly correlated in cases (P=0.001) compared with controls (P=0.010). The results of the present study indicated that the relationship among mutational spectrum, gene expression and demographic characteristics may improve the genetic diagnosis and primary prevention of at-risk individuals belonging to families with reduced mRNA expression, regardless of mutation presence.


The Benzimidazole-Based Anthelmintic Parbendazole: A Repurposed Drug Candidate That Synergizes with Gemcitabine in Pancreatic Cancer.

  • Rosalba Florio‎ et al.
  • Cancers‎
  • 2019‎

Pancreatic cancer (PC) is one of the most lethal, chemoresistant malignancies and it is of paramount importance to find more effective therapeutic agents. Repurposing of non-anticancer drugs may expand the repertoire of effective molecules. Studies on repurposing of benzimidazole-based anthelmintics in PC and on their interaction with agents approved for PC therapy are lacking. We analyzed the effects of four Food and Drug Administration (FDA)-approved benzimidazoles on AsPC-1 and Capan-2 pancreatic cancer cell line viability. Notably, parbendazole was the most potent benzimidazole affecting PC cell viability, with half maximal inhibitory concentration (IC50) values in the nanomolar range. The drug markedly inhibited proliferation, clonogenicity and migration of PC cell lines through mechanisms involving alteration of microtubule organization and formation of irregular mitotic spindles. Moreover, parbendazole interfered with cell cycle progression promoting G2/M arrest, followed by the emergence of enlarged, polyploid cells. These abnormalities, suggesting a mitotic catastrophe, culminated in PC cell apoptosis, are also associated with DNA damage in PC cell lines. Remarkably, combinations of parbendazole with gemcitabine, a drug employed as first-line treatment in PC, synergistically decreased PC cell viability. In conclusion, this is the first study providing evidence that parbendazole as a single agent, or in combination with gemcitabine, is a repurposing candidate in the currently dismal PC therapy.


PPAR-γ agonist GL516 reduces oxidative stress and apoptosis occurrence in a rat astrocyte cell line.

  • Letizia Giampietro‎ et al.
  • Neurochemistry international‎
  • 2019‎

The worldwide increase in aging population is prevalently associated with the increase of neurodegenerative diseases. Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-modulated transcriptional factors which belong to the nuclear hormone receptor superfamily which regulates peroxisome proliferation. The PPAR-γ is the most extensively studied among the three isoforms and the neuroprotective effects of PPAR-γ agonists have been recently demonstrated in a variety of preclinical models of neurological disorders. The aim of the study is to biologically evaluate the neuroprotective effects of new PPAR-γ selective agonists in an in vitro model.


Acetamidine-Based iNOS Inhibitors as Molecular Tools to Counteract Inflammation in BV2 Microglial Cells.

  • Silvia Grottelli‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Neurodegenerative diseases are associated with increased levels of nitric oxide (NO) mainly produced by microglial cells through inducible nitric oxide synthase (iNOS) whose expression is induced by inflammatory stimuli. NO can both exert cytotoxic functions and induce a metabolic switch by inhibiting oxidative phosphorylation and upregulating glycolytic flux. Here, we investigated whether two newly synthesized acetamidine based iNOS inhibitors, namely CM292 and CM544, could inhibit lipopolysaccharide (LPS)-induced BV2 microglial cell activation, focusing on both inflammatory and metabolic profiles. We found that CM292 and CM544, without affecting iNOS protein expression, reduced NO production and reverted LPS-induced inflammatory and cytotoxic response. Furthermore, in the presence of the inflammatory stimulus, both the inhibitors increased the expression of glycolytic enzymes. In particular, CM292 significantly reduced nuclear accumulation of pyruvate kinase M2, increased mitochondrial membrane potential and oxygen consumption rate, and augmented the expression of pyruvate dehydrogenase, pointing to a metabolic switch toward oxidative phosphorylation. These data confirm the role played by NO in the connection between cell bioenergetics profile and inflammation, and suggest the potential usefulness of iNOS inhibitors in redirecting microglia from detrimental to pro-regenerative phenotype.


Design, Synthesis and Biological Evaluation of Aromatase Inhibitors Based on Sulfonates and Sulfonamides of Resveratrol.

  • Marialuigia Fantacuzzi‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2021‎

A library of sulfonate and sulfonamide derivatives of Resveratrol was synthesized and tested for its aromatase inhibitory potential. Interestingly, sulfonate derivatives were found to be more active than sulfonamide bioisosteres with IC50 values in the low micromolar range. The sulfonate analogues 1b-c and 1j exhibited good in vitro antiproliferative activity on the MCF7 cell line, evidenced by MTT and LDH release assays. Structure-activity relationships suggested that electronic and lipophilic properties could have a different role in promoting the biological response for sulfonates and sulfonamides, respectively. Docking studies disclosed the main interactions at a molecular level of detail behind the observed inhibition of the more active compounds whose chemical stability has been evaluated with nano-liquid chromatography. Finally, 1b-c and 1j were highlighted as sulfonates to be further developed as novel and original aromatase inhibitors.


Flow Cytometry Detection of Anthracycline-Treated Breast Cancer Cells: An Optimized Protocol.

  • Giulia Catitti‎ et al.
  • Current issues in molecular biology‎
  • 2022‎

The use of anthracycline derivatives was approved for the treatment of a broad spectrum of human tumors (i.e., breast cancer). The need to test these drugs on cancer models has pushed the basic research to apply many types of in vitro assays, and, among them, the study of anthracycline-induced apoptosis was mainly based on the application of flow cytometry protocols. However, the chemical structure of anthracycline derivatives gives them a strong autofluorescence effect that must be considered when flow cytometry is used. Unfortunately, the guidelines on the analysis of anthracycline effects through flow cytometry are lacking. Therefore, in this study, we optimized the flow cytometry detection of doxorubicin and epirubicin-treated breast cancer cells. Their autofluorescence was assessed both by using conventional and imaging flow cytometry; we found that all the channels excited by the 488 nm laser were affected. Anthracycline-induced apoptosis was then measured via flow cytometry using the optimized setting. Consequently, we established a set of recommendations that enable the development of optimized flow cytometry settings when the in vitro assays of anthracycline effects are analyzed, with the final aim to reveal a new perspective on the use of those in vitro tests for the further implementation of precision medicine strategies in cancer.


Olea europea L. Leaves and Hibiscus sabdariffa L. Petals Extracts: Herbal Mix from Cardiovascular Network Target to Gut Motility Dysfunction Application.

  • Laura Beatrice Mattioli‎ et al.
  • Nutrients‎
  • 2022‎

It is well known that diet and nutrition play a critical role in the etiopathogenesis of many disorders. On the other hand, nutrients or bioactive compounds can specifically target and control various aspects of the mechanism underlying the pathology itself, and, in this context, diseases related to intestinal motility disorders stand out. The Herbal Mix (HM) consisting of Olea europea L. leaf (OEE) and Hibiscus sabdariffa L. (HSE) extracts (13:2) has been proven to be a promising nutraceutical option for many diseases, but its potential in inflammatory-driven gastrointestinal disorders is still unexplored. In this study, HM effects on guinea-pig ileum and colon contractility (induced or spontaneous) and on human iNOS activity, as well as on human colorectal adenocarcinoma Caco-2 cells, were studied. Results showed that the HM can control the ileum and colon contractility without blocking the progression of the food bolus, can selectively inhibit iNOS and possesses a strong pro-apoptotic activity towards Caco-2 cells. In conclusion, the present results suggest that, in some diseases, such as those related to motility disorders, an appropriate nutritional approach can be accompanied by a correct use of nutraceuticals that could help not only in ameliorating the symptoms but also in preventing more severe, cancer-related conditions.


Anti-Inflammatory, Antioxidant, and WAT/BAT-Conversion Stimulation Induced by Novel PPAR Ligands: Results from Ex Vivo and In Vitro Studies.

  • Lucia Recinella‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

Activation of peroxisome proliferator-activated receptors (PPARs) not only regulates multiple metabolic pathways, but mediates various biological effects related to inflammation and oxidative stress. We investigated the effects of four new PPAR ligands containing a fibrate scaffold-the PPAR agonists (1a (αEC50 1.0 μM) and 1b (γEC50 0.012 μM)) and antagonists (2a (αIC50 6.5 μM) and 2b (αIC50 0.98 μM, with a weak antagonist activity on γ isoform))-on proinflammatory and oxidative stress biomarkers. The PPAR ligands 1a-b and 2a-b (0.1-10 μM) were tested on isolated liver specimens treated with lipopolysaccharide (LPS), and the levels of lactate dehydrogenase (LDH), prostaglandin (PG) E2, and 8-iso-PGF2α were measured. The effects of these compounds on the gene expression of the adipose tissue markers of browning, PPARα, and PPARγ, in white adipocytes, were evaluated as well. We found a significant reduction in LPS-induced LDH, PGE2, and 8-iso-PGF2α levels after 1a treatment. On the other hand, 1b decreased LPS-induced LDH activity. Compared to the control, 1a stimulated uncoupling protein 1 (UCP1), PR-(PRD1-BF1-RIZ1 homologous) domain containing 16 (PRDM16), deiodinase type II (DIO2), and PPARα and PPARγ gene expression, in 3T3-L1 cells. Similarly, 1b increased UCP1, DIO2, and PPARγ gene expression. 2a-b caused a reduction in the gene expression of UCP1, PRDM16, and DIO2 when tested at 10 μM. In addition, 2a-b significantly decreased PPARα gene expression. A significant reduction in PPARγ gene expression was also found after 2b treatment. The novel PPARα agonist 1a might be a promising lead compound and represents a valuable pharmacological tool for further assessment. The PPARγ agonist 1b could play a minor role in the regulation of inflammatory pathways.


Paragangliomas arise through an autonomous vasculo-angio-neurogenic program inhibited by imatinib.

  • Fabio Verginelli‎ et al.
  • Acta neuropathologica‎
  • 2018‎

Tumours can be viewed as aberrant tissues or organs sustained by tumorigenic stem-like cells that engage into dysregulated histo/organogenetic processes. Paragangliomas, prototypical organoid tumours constituted by dysmorphic variants of the vascular and neural tissues found in normal paraganglia, provide a model to test this hypothesis. To understand the origin of paragangliomas, we built a biobank comprising 77 cases, 18 primary cultures, 4 derived cell lines, 80 patient-derived xenografts and 11 cell-derived xenografts. We comparatively investigated these unique complementary materials using morphofunctional, ultrastructural and flow cytometric assays accompanied by microRNA studies. We found that paragangliomas contain stem-like cells with hybrid mesenchymal/vasculoneural phenotype, stabilized and expanded in the derived cultures. The viability and growth of such cultures depended on the downregulation of the miR-200 and miR-34 families, which allowed high PDGFRA and ZEB1 protein expression levels. Both tumour tissue- and cell culture-derived xenografts recapitulated the vasculoneural paraganglioma structure and arose from mesenchymal-like cells through a fixed developmental sequence. First, vasculoangiogenesis organized the microenvironment, building a perivascular niche which in turn supported neurogenesis. Neuroepithelial differentiation was associated with severe mitochondrial dysfunction, not present in cultured paraganglioma cells, but acquired in vivo during xenograft formation. Vasculogenesis was the Achilles' heel of xenograft development. In fact, imatinib, that targets endothelial-mural signalling, blocked paraganglioma xenograft formation (11 xenografts from 12 cell transplants in the control group versus 2 out of 10 in the treated group, P = 0.0015). Overall our key results were unaffected by the SDHx gene carrier status of the patient, characterized for 70 out of 77 cases. In conclusion, we explain the biphasic vasculoneural structure of paragangliomas and identify an early and pharmacologically actionable phase of paraganglioma organization.


Drug Repurposing, an Attractive Strategy in Pancreatic Cancer Treatment: Preclinical and Clinical Updates.

  • Laura De Lellis‎ et al.
  • Cancers‎
  • 2021‎

Pancreatic cancer (PC) is one of the deadliest malignancies worldwide, since patients rarely display symptoms until an advanced and unresectable stage of the disease. Current chemotherapy options are unsatisfactory and there is an urgent need for more effective and less toxic drugs to improve the dismal PC therapy. Repurposing of non-oncology drugs in PC treatment represents a very promising therapeutic option and different compounds are currently being considered as candidates for repurposing in the treatment of this tumor. In this review, we provide an update on some of the most promising FDA-approved, non-oncology, repurposed drug candidates that show prominent clinical and preclinical data in pancreatic cancer. We also focus on proposed mechanisms of action and known molecular targets that they modulate in PC. Furthermore, we provide an explorative bioinformatic analysis, which suggests that some of the PC repurposed drug candidates have additional, unexplored, oncology-relevant targets. Finally, we discuss recent developments regarding the immunomodulatory role displayed by some of these drugs, which may expand their potential application in synergy with approved anticancer immunomodulatory agents that are mostly ineffective as single agents in PC.


A grape (Vitis vinifera L.) pomace water extract modulates inflammatory and immune response in SW-480 cells and isolated mouse colon.

  • Lucia Recinella‎ et al.
  • Phytotherapy research : PTR‎
  • 2022‎

Grape (Vitis vinifera L.) pomace is a residue derived from the winemaking process, which contains bioactive compounds displaying noteworthy health-promoting properties. The aim of the present study was to investigate the phenolic composition and protective effects of a water extract of grape pomace (WEGP) in colorectal cancer cell line SW480 and in isolated mouse colon exposed to Escherichia coli lipopolysaccharide (LPS). The extract decreased SW-480 cell viability, as well as vascular endothelial factor A (VEGFA), hypoxia-induced factor 1α (HIF1α), and transient receptor potential M8 (TRPM8) LPS-induced gene expression. Moreover, the extract inhibited mRNA levels of nuclear factor kB (NFkB), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)α, interleukin (IL)-6, IL-1β, IL-10, inducible nitric oxide synthase (iNOS), and interferon (IFN)γ, in isolated colon. Conversely, WEGP increased the gene expression of antioxidant catalase (CAT) and superoxide dismutase (SOD), in the same model. The modulatory effects exerted by WEGP could be related, at least in part, to the phenolic composition, with particular regards to the catechin level. Docking calculations also predicted the interactions of catechin toward TRPM8 receptor, deeply involved in colon cancer; thus further suggesting the grape pomace as a valuable source of bioactive extracts and phytochemicals with protective effects in the colon.


Protective Effects Induced by a Hydroalcoholic Allium sativum Extract in Isolated Mouse Heart.

  • Lucia Recinella‎ et al.
  • Nutrients‎
  • 2021‎

The aim of the present study was to investigate the possible protective effects of a garlic hydroalcoholic extract on the burden of oxidative stress and inflammation occurring on mouse heart specimens exposed to E. coli lipopolysaccharide (LPS), which is a well-established inflammatory stimulus. Headspace solid-phase microextraction combined with the gas chromatography-mass spectrometry (HS-SPME/GC-MS) technique was applied to determine the volatile fraction of the garlic powder, and the HS-SPME conditions were optimized for each of the most representative classes of compounds. CIEL*a*b* colorimetric analyses were performed on the powder sample at the time of delivery, after four and after eight months of storage at room temperature in the dark, to evaluate the color changing. Freshly prepared hydroalcoholic extract was also evaluated in its color character. Furthermore, the hydroalcoholic extract was analyzed through GC-MS. The extract was found to be able to significantly inhibit LPS-induced prostaglandin (PG) E2 and 8-iso-PGF2α levels, as well as mRNA levels of cyclooxygenase (COX)-2, interleukin (IL)-6, and nuclear factor-kB (NF-kB), in heart specimens. Concluding, our findings showed that the garlic hydroalcoholic extract exhibited cardioprotective effects on multiple inflammatory and oxidative stress pathways.


Tgf-β1 transcriptionally promotes 90K expression: possible implications for cancer progression.

  • Antonino Grassadonia‎ et al.
  • Cell death discovery‎
  • 2021‎

The 90K protein, also known as Mac-2 BP or LGALS3BP, can activate the immune response in part by increasing major histocompatibility (MHC) class I levels. In studies on a non-immune cell model, the rat FRTL-5 cell line, we observed that transforming growth factor (TGF)-β1, like γ-interferon (IFN), increased 90K levels, despite its immunosuppressive functions and the ability to decrease MHC class I. To explain this paradoxical result, we investigated the mechanisms involved in the TGF-β1 regulation of 90K expression with the aim to demonstrate that TGF-β1 utilizes different molecular pathways to regulate the two genes. We found that TGF-β1 was able to increase the binding of Upstream Stimulatory Factors, USF1 and USF2, to an E-box element, CANNTG, at -1926 to -1921 bp, upstream of the interferon response element (IRE) in the 90K promoter. Thyrotropin (TSH) suppressed constitutive and γ-IFN-induced 90K expression by decreasing USF binding to the E-box. TGF-β1 was able to overcome TSH suppression at the transcriptional level by increasing USF binding to the E-box. We suggest that the ability of TGF-β1 to increase 90K did not result in an increase in MHC class I because of a separate suppressive action of TGF-β1 directly on the MHC class I gene. We propose that the increased levels of 90K may play a role, rather than in immune response, in the context of the TGF-β1-induced changing of the cellular microenvironment that predisposes to cell motility and cancer progression. Consistently, analyzing the publicly available cancer patient data sets cBioPortal, we found that 90K expression directly correlated with TGF-β1 and USFs and that high levels of 90K were significantly associated with increased mortality in patients affected by different types of cancer.


Emerging Effects of Resveratrol Derivatives in Cells Involved in Oral Wound Healing: A Preliminary Study.

  • Emira D'Amico‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Recently, there has been an increasing interest in finding new approaches to manage oral wound healing. Although resveratrol (RSV) exhibited many biological properties, such as antioxidant and anti-inflammatory activities, its use as a drug is limited by unfavorable bioavailability. This study aimed to investigate a series of RSV derivatives (1a-j) with better pharmacokinetic profiles. At first, their cytocompatibility at different concentrations was tested on gingival fibroblasts (HGFs). Among them, derivatives 1d and 1h significantly increased cell viability compared to the reference compound RSV. Thus, 1d and 1h were investigated for cytotoxicity, proliferation, and gene expression in HGFs, endothelial cells (HUVECs), and oral osteoblasts (HOBs), which are the main cells involved in oral wound healing. For HUVECs and HGFs, the morphology was also evaluated, while for HOBs ALP and mineralization were observed. The results showed that both 1d and 1h did not exert negative effects on cell viability, and at a lower concentration (5 µM) both even significantly enhanced the proliferative rate, compared to RSV. The morphology observations pointed out that the density of HUVECs and HGFs was promoted by 1d and 1h (5 µM) and mineralization was promoted in HOBs. Moreover, 1d and 1h (5 µM) induced a higher eNOS mRNA level in HUVECs, higher COL1 mRNA in HGFs, and higher OCN in HOBs, compared to RSV. The appreciable physicochemical properties and good enzymatic and chemical stability of 1d and 1h, along with their promising biological properties, provide the scientific basis for further studies leading to the development of RSV-based agents useful in oral tissue repair.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: