Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Epstein-Barr Virus MicroRNAs are Expressed in Patients with Chronic Lymphocytic Leukemia and Correlate with Overall Survival.

  • Alessandra Ferrajoli‎ et al.
  • EBioMedicine‎
  • 2015‎

Although numerous studies highlighted the role of Epstein-Barr Virus (EBV) in B-cell transformation, the involvement of EBV proteins or genome in the development of the most frequent adult leukemia, chronic lymphocytic leukemia (CLL), has not yet been defined. We hypothesized that EBV microRNAs contribute to progression of CLL and demonstrated the presence of EBV miRNAs in B-cells, in paraffin-embedded bone marrow biopsies and in the plasma of patients with CLL by using three different methods (small RNA-sequencing, quantitative reverse transcription PCR [q-RT-PCR] and miRNAs in situ hybridization [miRNA-ISH]). We found that EBV miRNA BHRF1-1 expression levels were significantly higher in the plasma of patients with CLL compared with healthy individuals (p < 0 · 0001). Notably, BHRF1-1 as well as BART4 expression were detected in the plasma of either seronegative or seropositive (anti-EBNA-1 IgG and EBV DNA tested) patients; similarly, miRNA-ISH stained positive in bone marrow specimens while LMP1 and EBER immunohistochemistry failed to detect viral proteins and RNA. We also found that BHRF1-1 plasma expression levels were positively associated with elevated beta-2-microglobulin levels and advanced Rai stages and observed a correlation between higher BHRF1-1 expression levels and shorter survival in two independent patients' cohorts. Furthermore, in the majority of CLL cases where BHRF1-1 was exogenously induced in primary malignant B cells the levels of TP53 were reduced. Our findings suggest that EBV may have a role in the process of disease progression in CLL and that miRNA RT-PCR and miRNAs ISH could represent additional methods to detect EBV miRNAs in patients with CLL.


An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination.

  • Michael B Keough‎ et al.
  • Nature communications‎
  • 2016‎

Remyelination is the generation of new myelin sheaths after injury facilitated by processes of differentiating oligodendrocyte precursor cells (OPCs). Although this repair phenomenon occurs in lesions of multiple sclerosis patients, many lesions fail to completely remyelinate. A number of factors have been identified that contribute to remyelination failure, including the upregulated chondroitin sulfate proteoglycans (CSPGs) that comprise part of the astrogliotic scar. We show that in vitro, OPCs have dramatically reduced process outgrowth in the presence of CSPGs, and a medication library that includes a number of recently reported OPC differentiation drugs failed to rescue this inhibitory phenotype on CSPGs. We introduce a novel CSPG synthesis inhibitor to reduce CSPG content and find rescued process outgrowth from OPCs in vitro and accelerated remyelination following focal demyelination in mice. Preventing CSPG deposition into the lesion microenvironment may be a useful strategy to promote repair in multiple sclerosis and other neurological disorders.


The CXCR4-STAT3-IL-10 Pathway Controls the Immunoregulatory Function of Chronic Lymphocytic Leukemia and Is Modulated by Lenalidomide.

  • Hila Shaim‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Chronic lymphocytic leukemia (CLL) cells possess regulatory functions comparable to those of normal B10 cells, a regulatory B cell subset that suppresses effector T-cell function through STAT3-mediated IL-10 production. However, the mechanisms governing IL-10 production by CLL cells are not fully understood. Here, we show that the CXC chemokine ligand 12 (CXCL12)-CXCR4-STAT3 axis regulates IL-10 production by CLL cells and their ability to suppress T-cell effector function through an IL-10 mediated mechanism. Knockdown of STAT3 significantly impaired the ability of CLL cells to produce IL-10. Furthermore, experiments to assess the role of lenalidomide, an immunomodulatory agent with direct antitumor effect as well as pleiotropic activity on the immune system, showed that this agent prevents a CXCL12-induced increase in p-S727-STAT3 and the IL-10 response by CLL cells. Lenalidomide also suppressed IL-10-induced Y705-STAT3 phosphorylation in healthy T cells, thus reversing CLL-induced T-cell dysfunction. We conclude that the capacity of CLL cells to produce IL-10 is mediated by the CXCL12-CXCR4-STAT3 pathway and likely contributes to immunodeficiency in patients. Lenalidomide appears to be able to reverse CLL-induced immunosuppression through including abrogation of the CXCL12-CXCR4-S727-STAT3-mediated IL-10 response by CLL cells and prevention of IL-10-induced phosphorylation of Y705-STAT3 in T cells.


Quantitative disease progression model of α-1 proteinase inhibitor therapy on computed tomography lung density in patients with α-1 antitrypsin deficiency.

  • Michael A Tortorici‎ et al.
  • British journal of clinical pharmacology‎
  • 2017‎

Early-onset emphysema attributed to α-1 antitrypsin deficiency (AATD) is frequently overlooked and undertreated. RAPID-RCT/RAPID-OLE, the largest clinical trials of purified human α-1 proteinase inhibitor (A1 -PI; 60 mg kg-1  week-1 ) therapy completed to date, demonstrated for the first time that A1 -PI is clinically effective in slowing lung tissue loss in AATD. A posthoc pharmacometric analysis was undertaken to further explore dose, exposure and response.


Plasma Viral miRNAs Indicate a High Prevalence of Occult Viral Infections.

  • Enrique Fuentes-Mattei‎ et al.
  • EBioMedicine‎
  • 2017‎

Prevalence of Kaposi sarcoma-associated herpesvirus (KSHV/HHV-8) varies greatly in different populations. We hypothesized that the actual prevalence of KSHV/HHV8 infection in humans is underestimated by the currently available serological tests. We analyzed four independent patient cohorts with post-surgical or post-chemotherapy sepsis, chronic lymphocytic leukemia and post-surgical patients with abdominal surgical interventions. Levels of specific KSHV-encoded miRNAs were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and KSHV/HHV-8 IgG were measured by immunoassay. We also measured specific miRNAs from Epstein Barr Virus (EBV), a virus closely related to KSHV/HHV-8, and determined the EBV serological status by ELISA for Epstein-Barr nuclear antigen 1 (EBNA-1) IgG. Finally, we identified the viral miRNAs by in situ hybridization (ISH) in bone marrow cells. In training/validation settings using independent multi-institutional cohorts of 300 plasma samples, we identified in 78.50% of the samples detectable expression of at least one of the three tested KSHV-miRNAs by RT-qPCR, while only 27.57% of samples were found to be seropositive for KSHV/HHV-8 IgG (P<0.001). The prevalence of KSHV infection based on miRNAs qPCR is significantly higher than the prevalence determined by seropositivity, and this is more obvious for immuno-depressed patients. Plasma viral miRNAs quantification proved that EBV infection is ubiquitous. Measurement of viral miRNAs by qPCR has the potential to become the "gold" standard method to detect certain viral infections in clinical practice.


STAT3-activated CD36 facilitates fatty acid uptake in chronic lymphocytic leukemia cells.

  • Uri Rozovski‎ et al.
  • Oncotarget‎
  • 2018‎

Although several studies established that unlike normal B cells chronic lymphocytic leukemia (CLL) cells metabolize fatty acids (FA), how CLL cells internalize FA is poorly understood. Because in various cell types CD36 facilitates FA uptake, we wondered whether a similar mechanism is operative CLL. We found that CD36 levels are higher in CLL cells than in normal B cells, and that small interfering RNA, CD36 neutralizing antibodies or sulfosuccinimidyl oleate (SSO) that inhibits CD36 significantly reduced the oxygen consumption of CLL cells incubated with FA. Because CD36 is oeverexpressed and STAT3 is constitutively activated in CLL cells, we wondered whether STAT3 induces CD36 expression. Sequence analysis identified putative STAT3 binding sites in the CD36 gene promoter. Chromatin immunoprecipitation and an electrophoretic mobility shift assay revealed that STAT3 binds to the CD36 gene promoter. A luciferase assay and STAT3-small hairpin RNA, that significantly decreased the levels of CD36 in CLL cells, established that STAT3 activates the transcription of the CD36 gene. Furthermore, SSO induced a dose-dependent apoptosis of CLL cells. Taken together, our data suggest that STAT3 activates CD36 and that CD36 facilitates FA uptake in CLL cells. Whether CD36 inhibition would provide clinical benefits in CLL remains to be determined.


STAT3 induces the expression of GLI1 in chronic lymphocytic leukemia cells.

  • Uri Rozovski‎ et al.
  • Oncotarget‎
  • 2021‎

The glioma associated oncogene-1 (GLI1), a downstream effector of the embryonic Hedgehog pathway, was detected in chronic lymphocytic leukemia (CLL), but not normal adult cells. GLI1 activating mutations were identified in 10% of patients with CLL. However, what induces GLI1 expression in GLI1-unmutated CLL cells is unknown. Because signal transducer and activator of transcription 3 (STAT3) is constitutively activated in CLL cells and sequence analysis detected putative STAT3-binding sites in the GLI1 gene promoter, we hypothesized that STAT3 induces the expression of GLI1. Western immunoblotting detected GLI1 in CLL cells from 7 of 7 patients, flow cytometry analysis confirmed that CD19+/CD5+ CLL cells co-express GLI1 and confocal microscopy showed co-localization of GLI1 and phosphorylated STAT3. Chromatin immunoprecipitation showed that STAT3 protein co-immunoprecipitated GLI1 as well as other STAT3-regulated genes. Transfection of CLL cells with STAT3-shRNA induced a mark decrease in GLI1 levels, suggesting that STAT3 binds to and induces the expression of GLI1 in CLL cells. An electromobility shift assay confirmed that STAT3 binds, and a luciferase assay showed that STAT3 activates the GLI1 gene. Transfection with GLI1-siRNA significantly increased the spontaneous apoptosis rate of CLL cells, suggesting that GLI1 inhibitors might provide therapeutic benefit to patients with CLL.


Proteomic profiling based classification of CLL provides prognostication for modern therapy and identifies novel therapeutic targets.

  • Ti'ara L Griffen‎ et al.
  • Blood cancer journal‎
  • 2022‎

Protein expression for 384 total and post-translationally modified proteins was assessed in 871 CLL and MSBL patients and was integrated with clinical data to identify strategies for improving diagnostics and therapy, making this the largest CLL proteomics study to date. Proteomics identified six recurrent signatures that were highly prognostic of survival and time to first or second treatment at three levels: individual proteins, when grouped into 40 functionally related groups (PFGs), and systemically in signatures (SGs). A novel SG characterized by hairy cell leukemia like proteomics but poor therapy response was discovered. SG membership superseded other prognostic factors (Rai Staging, IGHV Status) and were prognostic for response to modern (BTK inhibition) and older CLL therapies. SGs and PFGs membership provided novel drug targets and defined optimal candidates for Watch and Wait vs. early intervention. Collectively proteomics demonstrates promise for improving classification, therapeutic strategy selection, and identifying novel therapeutic targets.


BET proteolysis targeted chimera-based therapy of novel models of Richter Transformation-diffuse large B-cell lymphoma.

  • Warren Fiskus‎ et al.
  • Leukemia‎
  • 2021‎

Richter Transformation (RT) develops in CLL as an aggressive, therapy-resistant, diffuse large B cell lymphoma (RT-DLBCL), commonly clonally-related (CLR) to the concomitant CLL. Lack of available pre-clinical human models has hampered the development of novel therapies for RT-DLBCL. Here, we report the profiles of genetic alterations, chromatin accessibility and active enhancers, gene-expressions and anti-lymphoma drug-sensitivity of three newly established, patient-derived, xenograft (PDX) models of RT-DLBCLs, including CLR and clonally-unrelated (CLUR) to concomitant CLL. The CLR and CLUR RT-DLBCL cells display active enhancers, higher single-cell RNA-Seq-determined mRNA, and protein expressions of IRF4, TCF4, and BCL2, as well as increased sensitivity to BET protein inhibitors. CRISPR knockout of IRF4 attenuated c-Myc levels and increased sensitivity to a BET protein inhibitor. Co-treatment with BET inhibitor or BET-PROTAC and ibrutinib or venetoclax exerted synergistic in vitro lethality in the RT-DLBCL cells. Finally, as compared to each agent alone, combination therapy with BET-PROTAC and venetoclax significantly reduced lymphoma burden and improved survival of immune-depleted mice engrafted with CLR-RT-DLBCL. These findings highlight a novel, potentially effective therapy for RT-DLBCL.


A two-gene signature, SKI and SLAMF1, predicts time-to-treatment in previously untreated patients with chronic lymphocytic leukemia.

  • Carmen D Schweighofer‎ et al.
  • PloS one‎
  • 2011‎

We developed and validated a two-gene signature that predicts prognosis in previously-untreated chronic lymphocytic leukemia (CLL) patients. Using a 65 sample training set, from a cohort of 131 patients, we identified the best clinical models to predict time-to-treatment (TTT) and overall survival (OS). To identify individual genes or combinations in the training set with expression related to prognosis, we cross-validated univariate and multivariate models to predict TTT. We identified four gene sets (5, 6, 12, or 13 genes) to construct multivariate prognostic models. By optimizing each gene set on the training set, we constructed 11 models to predict the time from diagnosis to treatment. Each model also predicted OS and added value to the best clinical models. To determine which contributed the most value when added to clinical variables, we applied the Akaike Information Criterion. Two genes were consistently retained in the models with clinical variables: SKI (v-SKI avian sarcoma viral oncogene homolog) and SLAMF1 (signaling lymphocytic activation molecule family member 1; CD150). We optimized a two-gene model and validated it on an independent test set of 66 samples. This two-gene model predicted prognosis better on the test set than any of the known predictors, including ZAP70 and serum β2-microglobulin.


Gray Matter Hypoxia in the Brain of the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis.

  • Thomas W Johnson‎ et al.
  • PloS one‎
  • 2016‎

Multiple sclerosis (MS) has a significant inflammatory component and may have significant gray matter (GM) pathophysiology. Brain oxygenation is a sensitive measurement of the balance between metabolic need and oxygen delivery. There is evidence that inflammation and hypoxia are interdependent. In this paper, we applied novel, implanted PO2 sensors to measure hypoxia in cortical and cerebellar GM, in an inflammation-induced mouse model of MS.


Central nervous system targeted autoimmunity causes regional atrophy: a 9.4T MRI study of the EAE mouse model of Multiple Sclerosis.

  • A Max Hamilton‎ et al.
  • Scientific reports‎
  • 2019‎

Atrophy has become a clinically relevant marker of progressive neurodegeneration in multiple sclerosis (MS). To better understand atrophy, mouse models that feature atrophy along with other aspects of MS are needed. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS was used to determine the extent of atrophy in a model of inflammation-associated central nervous system pathology. High-resolution magnetic resonance imaging (MRI) and atlas-based volumetric analysis were performed to measure brain regional volumes in EAE mice. EAE brains were larger at peak clinical disease (days 14-16) compared to controls, with affected regions including the cerebellum, hippocampus, and corpus callosum. Following peak clinical disease, EAE mice exhibited significant loss of volume at chronic long-term disease duration (day 66+). Atrophy was identified in both white and grey matter regions including the cerebral cortex, cerebellum, hippocampus, corpus callosum, basal forebrain, midbrain, optic tract, and colliculus. Histological analysis of the atrophied cortex, cerebellum, and hippocampus showed demyelination, and axonal/neuronal loss. We hypothesize this atrophy could be a result of inflammatory associated neurodegenerative processes, which may also be involved in MS. Using MRI and atlas-based volumetrics, EAE has the potential to be a test bed for treatments aimed at reducing progressive neurological deterioration in MS.


Strategies to identify hepatitis C virus infection in patients receiving anticancer therapy: a cross-sectional study.

  • Harrys A Torres‎ et al.
  • Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer‎
  • 2021‎

Optimal hepatitis C virus (HCV) screening strategies for cancer patients have not been established. We compared the performance of selective HCV screening strategies.


SnapShot: chronic lymphocytic leukemia.

  • Maria Ciccone‎ et al.
  • Cancer cell‎
  • 2014‎

Chronic lymphocytic leukemia (CLL) is the most common leukemia among adults in western countries. This SnapShot depicts the origins and evolution of this B cell malignancy, describes prognostic factors and CLL animal models, and illustrates therapies in preclinical and clinical development against CLL.


STAT3 is constitutively acetylated on lysine 685 residues in chronic lymphocytic leukemia cells.

  • Uri Rozovski‎ et al.
  • Oncotarget‎
  • 2018‎

Signal transducer and activator of transcription (STAT)-3 might be phosphorylated or acetylated. Unlike the phosphorylation of STAT3, little is known about the acetylation of STAT3 in chronic lymphocytic leukemia (CLL) cells. Because acetylation activates STAT3 transcription, we sought to study the acetylation status of STAT3 in CLL cells. Using Western immunoblotting, immunoprecipitation, and flow cytometry we found that, apart from its constitutive serine phosphorylation, STAT3 is constitutively acetylated on lysine 685 residues. Because the acetyltransferase p300 was found to acetylate STAT3 on lysine 685 residues, we wondered whether p300 acetylates STAT3 in CLL cells. Using Western immunoblotting we detected high levels of p300 protein in CLL but not normal B cells. Transfection of CLL cells with p300 small-interfering (si) RNA downregulated p300 transcripts as well as p300 and acetyl-STAT3 protein levels. In addition, p300 siRNA attenuated STAT3-DNA binding and downregulated mRNA levels of STAT3-regulated genes. Furthermore, transfection of CLL cells with p300-siRNA induced a 3-fold increase in the rate of spontaneous apoptosis. Taken together, our data suggest that in CLL cells STAT3 p300 induces constitutive acetylation and activation of STAT3. Whether inhibition of STAT3 acetylation might provide clinical benefit in patients with CLL remains to be determined.


The BET inhibitor GS-5829 targets chronic lymphocytic leukemia cells and their supportive microenvironment.

  • Ekaterina Kim‎ et al.
  • Leukemia‎
  • 2020‎

Despite major improvements in treatment outcome with novel targeted therapies, such as the Bruton tyrosine kinase (BTK) inhibitor ibrutinib, chronic lymphocytic leukemia (CLL) remains incurable in the majority of patients. Activation of PI3K, NF-κB, and/or MYC has been linked to residual disease and/or resistance in ibrutinib-treated patients. These pathways can be targeted by inhibitors of bromodomain and extra-terminal (BET) proteins. Here we report about the preclinical activity of GS-5829, a novel BET inhibitor, in CLL. GS-5829 inhibited CLL cell proliferation and induced leukemia cell apoptosis through deregulation of key signaling pathways, such as BLK, AKT, ERK1/2, and MYC. IκBα modulation indicates that GS-5829 also inhibited NF-κB signaling. GS-5829-induced apoptosis resulted from an imbalance between positive (BIM) and negative regulators (BCL-XL) of the intrinsic apoptosis pathway. The antileukemia activity of GS-5829 increased synergistically in combinations with B-cell receptor signaling inhibitors, the BTK inhibitor ibrutinib, the PI3Kδ inhibitor idelalisib, and the SYK inhibitor entospletinib. In cocultures that mimic the lymph node microenvironment, GS-5829 inhibited signaling pathways within nurselike cells and their growth, indicating that BET inhibitors also can target the supportive CLL microenvironment. Collectively, these data provide a rationale for the clinical evaluation of BET inhibitors in CLL.


Selection of a Nuclease-Resistant RNA Aptamer Targeting CD19.

  • Carla L Esposito‎ et al.
  • Cancers‎
  • 2021‎

The transmembrane glycoprotein cluster of differentiation 19 (CD19) is a B cell-specific surface marker, expressed on the majority of neoplastic B cells, and has recently emerged as a very attractive biomarker and therapeutic target for B-cell malignancies. The development of safe and effective ligands for CD19 has become an important need for the development of targeted conventional and immunotherapies. In this regard, aptamers represent a very interesting class of molecules. Additionally referred to as 'chemical antibodies', they show many advantages as therapeutics, including low toxicity and immunogenicity. Here, we isolated a nuclease-resistant RNA aptamer binding to the human CD19 glycoprotein. In order to develop an aptamer also useful as a carrier for secondary reagents, we adopted a cell-based SELEX (Systematic Evolution of Ligands by EXponential Enrichment) protocol adapted to isolate aptamers able to internalise upon binding to their cell surface target. We describe a 2'-fluoro pyrimidine modified aptamer, named B85.T2, which specifically binds to CD19 and shows an exquisite stability in human serum. The aptamer showed an estimated dissociation constant (KD) of 49.9 ± 13 nM on purified human recombinant CD19 (rhCD19) glycoprotein, a good binding activity on human B-cell chronic lymphocytic leukaemia cells expressing CD19, and also an effective and rapid cell internalisation, thus representing a promising molecule for CD19 targeting, as well as for the development of new B-cell malignancy-targeted therapies.


Detecting deoxyhemoglobin in spinal cord vasculature of the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis using susceptibility MRI and hyperoxygenation.

  • Nabeela Nathoo‎ et al.
  • PloS one‎
  • 2015‎

Susceptibility-weighted imaging (SWI) detects hypointensities due to iron deposition and deoxyhemoglobin. Previously it was shown that SWI detects hypointensities in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), most of which are due to intravascular deoxyhemoglobin, with a small proportion being due to iron deposition in the central nervous system parenchyma and demyelination. However, animals had to be sacrificed to differentiate these two types of lesions which is impractical for time course studies or for human application. Here, we proposed altering the inspired oxygen concentration during imaging to identify deoxyhemoglobin-based hypointensities in vivo. SWI was performed on lumbar spinal cords of naive control and EAE mice using 30% O2 then 100% O2. Some mice were imaged using 30% O2, 100% O2 and after perfusion. Most SWI-visible hypointensities seen with 30% O2 changed in appearance upon administration of 100% O2, and were not visible after perfusion. That hypointensities changed with hyperoxygenation indicates that they were caused by deoxyhemoglobin. We show that increasing the inspired oxygen concentration identifies deoxyhemoglobin-based hypointensities in vivo. This could be applied in future studies to investigate the contribution of vascular-based hypointensities with SWI in EAE and MS over time.


Signal transducer and activator of transcription (STAT)-3 regulates microRNA gene expression in chronic lymphocytic leukemia cells.

  • Uri Rozovski‎ et al.
  • Molecular cancer‎
  • 2013‎

Approximately 1,000 microRNAs (miRs) are present in the human genome; however, little is known about the regulation of miR transcription. Because miR levels are deregulated in chronic lymphocytic leukemia (CLL) and signal transducer and activator of transcription (STAT)-3 is constitutively activated in CLL, we sought to determine whether STAT3 affects the transcription of miR genes in CLL cells.


Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia.

  • Erika Tissino‎ et al.
  • The Journal of experimental medicine‎
  • 2018‎

The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, which antagonizes B cell receptor (BCR) signals, demonstrates remarkable clinical activity in chronic lymphocytic leukemia (CLL). The lymphocytosis experienced by most patients under ibrutinib has previously been attributed to inhibition of BTK-dependent integrin and chemokine cues operating to retain the tumor cells in nodal compartments. Here, we show that the VLA-4 integrin, as expressed by CD49d-positive CLL, can be inside-out activated upon BCR triggering, thus reinforcing the adhesive capacities of CLL cells. In vitro and in vivo ibrutinib treatment, although reducing the constitutive VLA-4 activation and cell adhesion, can be overcome by exogenous BCR triggering in a BTK-independent manner involving PI3K. Clinically, in three independent ibrutinib-treated CLL cohorts, CD49d expression identifies cases with reduced lymphocytosis and inferior nodal response and behaves as independent predictor of shorter progression-free survival, suggesting the retention of CD49d-expressing CLL cells in tissue sites via activated VLA-4. Evaluation of CD49d expression should be incorporated in the characterization of CLL undergoing therapy with BCR inhibitors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: