Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

The small molecule SI113 synergizes with mitotic spindle poisons in arresting the growth of human glioblastoma multiforme.

  • Claudia Abbruzzese‎ et al.
  • Oncotarget‎
  • 2017‎

Glioblastoma multiforme (GBM) is the deadliest brain tumor. State-of-art GBM therapy often fails to ensure control of a disease characterized by high frequency of recurrences and progression. In search for novel therapeutic approaches, we assayed the effect of compounds from a cancer drug library on the ADF GBM cell line, establishing their elevated sensitivity to mitotic spindle poisons. Our previous work showed that the effectiveness of the spindle poison paclitaxel in inhibiting cancer cell growth was dependent on the expression of RANBP1, a regulatory target of the serine/threonine kinase SGK1. Recently, we developed the small molecule SI113 to inhibit SGK1 activity. Therefore, we explored the outcome of the association between SI113 and selected spindle poisons, finding that these drugs generated a synergistic cytotoxic effect in GBM cells, drastically reducing their viability and clonogenic capabilities in vitro, as well as inhibiting tumor growth in vivo. We also defined the molecular bases of such a synergistic effect. Because SI113 displays low systemic toxicity, yet strong activity in potentiating the effect of radiotherapy in GBM cells, we believe that this drug could be a strong candidate for clinical trials, with the aim to add it to the current GBM therapeutic approaches.


CRIPTO Is a Marker of Chemotherapy-Induced Stem Cell Expansion in Non-Small Cell Lung Cancer.

  • Federica Francescangeli‎ et al.
  • Frontiers in oncology‎
  • 2022‎

Chemotherapy is the mainstay for the treatment of non-small cell lung cancer (NSCLC). However, NSCLC cells are either intrinsically chemoresistant or rapidly develop therapy resistance. Cancer stem cells (CSCs) are widely recognized as the cell population responsible for resistance to systemic therapies, but the molecular responses of CSCs to chemotherapeutic agents are largely unknown. We identified the embryonic protein CRIPTO in stem cell-enriched spheroid cultures of adenocarcinoma (AC) and squamous cell carcinoma (SCC) derived from NSCLC surgical specimens. The CRIPTO-positive population had increased clonogenic capacity and expression of stem cell-related factors. Stemness-related properties were also obtained with forced CRIPTO expression, whereas CRIPTO downregulation resulted in cell cycle blockade and CSCs death. Cell populations positive and negative for CRIPTO expression were interconvertible, and interfering with their reciprocal equilibrium resulted in altered homeostasis of cell expansion both in spheroid cultures and in tumor xenografts. Chemotherapy treatment of NSCLC cells resulted in reduction of cell number followed by increased CRIPTO expression and selective survival of CRIPTO-positive cells. In NSCLC tumor xenografts, chemotherapeutic agents induced partial cell death and tumor stabilization followed by CRIPTO overexpression and tumor progression. Altogether, these findings indicate CRIPTO as a marker of lung CSCs possibly implicated in cancer cell plasticity and post-chemotherapy tumor progression.


Type I IFNs promote cancer cell stemness by triggering the epigenetic regulator KDM1B.

  • Martina Musella‎ et al.
  • Nature immunology‎
  • 2022‎

Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I → KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunogenic drugs to prevent CSC expansion and increase the long-term benefit of therapy.


Salinomycin potentiates the cytotoxic effects of TRAIL on glioblastoma cell lines.

  • Alessia Calzolari‎ et al.
  • PloS one‎
  • 2014‎

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to exhibit therapeutic activity in cancer. However, many tumors remain resistant to treatment with TRAIL. Therefore, small molecules that potentiate the cytotoxic effects of TRAIL could be used for combinatorial therapy. Here we found that the ionophore antibiotic salinomycin acts in synergism with TRAIL, enhancing TRAIL-induced apoptosis in glioma cells. Treatment with low doses of salinomycin in combination with TRAIL augmented the activation of caspase-3 and increased TRAIL-R2 cell surface expression. TRAIL-R2 upmodulation was required for mediating the stimulatory effect of salinomycin on TRAIL-mediated apoptosis, since it was abrogated by siRNA-mediated TRAIL-R2 knockdown. Salinomycin in synergism with TRAIL exerts a marked anti-tumor effect in nude mice xenografted with human glioblastoma cells. Our results suggest that the combination of TRAIL and salinomycin may be a useful tool to overcome TRAIL resistance in glioma cells and may represent a potential drug for treatment of these tumors. Importantly, salinomycin+TRAIL were able to induce cell death of well-defined glioblastoma stem-like lines.


Identification of β-Dystrobrevin as a Direct Target of miR-143: Involvement in Early Stages of Neural Differentiation.

  • Maria Teresa Quaranta‎ et al.
  • PloS one‎
  • 2016‎

Duchenne Muscular Dystrophy, a genetic disorder that results in a gradual breakdown of muscle, is associated to mild to severe cognitive impairment in about one-third of dystrophic patients. The brain dysfunction is independent of the muscular pathology, occurs early, and is most likely due to defects in the assembly of the Dystrophin-associated Protein Complex (DPC) during embryogenesis. We have recently described the interaction of the DPC component β-dystrobrevin with members of complexes that regulate chromatin dynamics, and suggested that β-dystrobrevin may play a role in the initiation of neuronal differentiation. Since oxygen concentrations and miRNAs appear as well to be involved in the cellular processes related to neuronal development, we have studied how these factors act on β-dystrobrevin and investigated the possibility of their functional interplay using the NTera-2 cell line, a well-established model for studying neurogenesis. We followed the pattern of expression and regulation of β-dystrobrevin during the early stages of neuronal differentiation induced by exposure to retinoic acid (RA) under hypoxia as compared with normoxia, and found that β-dystrobrevin expression is regulated during RA-induced differentiation of NTera-2 cells. We also found that β-dystrobrevin pattern is delayed under hypoxic conditions, together with a delay in the differentiation and an increase in the proliferation rate of cells. We identified miRNA-143 as a direct regulator of β-dystrobrevin expression, demonstrated that β-dystrobrevin is expressed in the nucleus and showed that, in line with our previous in vitro results, β-dystrobrevin is a repressor of synapsin I in live cells. Altogether the newly identified regulatory pathway miR-143/β-dystrobrevin/synapsin I provides novel insights into the functions of β-dystrobrevin and opens up new perspectives for elucidating the molecular mechanisms underlying the neuronal involvement in muscular dystrophy.


Joint action of miR-126 and MAPK/PI3K inhibitors against metastatic melanoma.

  • Francesca Pedini‎ et al.
  • Molecular oncology‎
  • 2019‎

Emerging data support the rationale of combined therapies in advanced melanoma. Specifically, the combined use of drugs with different mechanisms of action can reduce the probability of selecting resistant clones. To identify agents active against melanoma cells, we screened a library of 349 anti-cancer compounds, currently in clinical use or trials, and selected PIK-75, an inhibitor of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, as the 'top active' drug. PIK-75 was then used alone or in combination with vemurafenib, the first BRAF inhibitor approved for patients with melanoma harboring BRAF mutations. We identified a combined dose of PIK-75 and vemurafenib that inhibited both the PI3K/AKT and mitogen-activated protein kinase pathways, thereby overcoming any compensatory activation. In view of the important tumor suppressor function induced by restoring expression of microRNA (miR)-126 in metastatic melanoma cells, we examined whether miR-126 has a synergistic role when included in a triple combination alongside PIK-75 and vemurafenib. We found that enforced expression of miR-126 (which alone can reduce tumorigenicity) significantly increased PIK-75 activity when used as either a single agent or in combination with vemurafenib. Interestingly, PIK-75 proved to be effective against early passage cell lines derived from patients' biopsies and on melanoma cell lines resistant to either vemurafenib or dabrafenib, thus suggesting that it potentially has the capability to overcome drug resistance. Finally, the synergistic role played by miR-126 in combination with vemurafenib and/or PIK-75 was demonstrated in vivo in mouse xenograft models, in which tumor growth inhibition was associated with increased apoptosis. These results not only show the efficacy of PIK-75 and vemurafenib co-treatment but also indicate that restoration of miR-126 expression in advanced melanoma can enhance their antitumor activity, which may possibly allow dose reduction to decrease adverse events without reducing the therapeutic benefits.


An Alternative Splice Variant of HIPK2 with Intron Retention Contributes to Cytokinesis.

  • Veronica Gatti‎ et al.
  • Cells‎
  • 2020‎

HIPK2 is a DYRK-like kinase involved in cellular stress response pathways, development, and cell division. Two alternative splice variants of HIPK2, HIPK2-FL and HIPK2-Δe8, have been previously identified as having different protein stability but similar functional activity in the stress response. Here, we describe one additional HIPK2 splice variant with a distinct subcellular distribution and functional activity in cytokinesis. This novel splice variant lacks the last two exons and retains intron13 with a stop codon after 89 bp of the intron, generating a short isoform, HIPK2-S, that is detectable by 2D Western blots. RT-PCR analyses of tissue arrays and tumor samples show that HIPK2-FL and HIPK2-S are expressed in normal human tissues in a tissue-dependent manner and differentially expressed in human colorectal and pancreatic cancers. Gain- and loss-of-function experiments showed that in contrast to HIPK2-FL, HIPK2-S has a diffuse, non-speckled distribution and is not involved in the DNA damage response. Rather, we found that HIPK2-S, but not HIPK2-FL, localizes at the intercellular bridge, where it phosphorylates histone H2B and spastin, both required for faithful cell division. Altogether, these data show that distinct human HIPK2 splice variants are involved in distinct HIPK2-regulated functions like stress response and cytokinesis.


Deregulated expression of the imprinted DLK1-DIO3 region in glioblastoma stemlike cells: tumor suppressor role of lncRNA MEG3.

  • Mariachiara Buccarelli‎ et al.
  • Neuro-oncology‎
  • 2020‎

Glioblastoma (GBM) stemlike cells (GSCs) are thought to be responsible for the maintenance and aggressiveness of GBM, the most common primary brain tumor in adults. This study aims at elucidating the involvement of deregulations within the imprinted delta-like homolog 1 gene‒type III iodothyronine deiodinase gene (DLK-DIO3) region on chromosome 14q32 in GBM pathogenesis.


Elesclomol-induced increase of mitochondrial reactive oxygen species impairs glioblastoma stem-like cell survival and tumor growth.

  • Mariachiara Buccarelli‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2021‎

Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults, characterized by a poor prognosis mainly due to recurrence and therapeutic resistance. It has been widely demonstrated that glioblastoma stem-like cells (GSCs), a subpopulation of tumor cells endowed with stem-like properties is responsible for tumor maintenance and progression. Moreover, it has been demonstrated that GSCs contribute to GBM-associated neovascularization processes, through different mechanisms including the transdifferentiation into GSC-derived endothelial cells (GdECs).


Constitutive activation of the ETS-1-miR-222 circuitry in metastatic melanoma.

  • Gianfranco Mattia‎ et al.
  • Pigment cell & melanoma research‎
  • 2011‎

MicroRNAs-221 and -222 are highly upregulated in several solid tumors, including melanomas. We demonstrate that the proto-oncogene ETS-1, involved in the pathogenesis of cancers of different origin, is a transcriptional regulator of miR-222 by direct binding to its promoter region. Differently from 293FT cells or early stage melanomas, where unphosphorylated ETS-1 represses miR-222 transcription, in metastatic melanoma the constitutively Thr-38 phosphorylated fraction of ETS-1 induces miR-222. Despite its stepwise decreased expression along with melanoma progression, the oncogenic activity of ETS-1 relies on its RAS/RAF/ERK-dependent phosphorylation status more than on its total amount. To close the loop, we demonstrate ETS-1 as a direct target of miR-222, but not miR-221, showing the novel option of their uncoupled functions. In addition, a spatial redistribution of ETS-1 protein from the nucleus to the cytoplasm is also evidenced in advanced melanoma cells. Finally, in vivo studies confirmed the contribution of miR-222 to the increased invasive potential obtained by ETS- silencing.


The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miR-221&222-c-FOS pathway.

  • M Cristina Errico‎ et al.
  • International journal of cancer‎
  • 2013‎

Cutaneous melanoma is the fastest increasing cancer worldwide. Although several molecular abnormalities have been associated with melanoma progression, the underlying mechanisms are still largely unknown and few targeted therapies are under evaluation. Here we show that the HOXB7/PBX2 dimer acts as a positive transcriptional regulator of the oncogenic microRNA-221 and -222. In addition, demonstrating c-FOS as a direct target of miR-221&222, we identify a HOXB7/PBX2→miR-221&222 →c-FOS regulatory link, whereby the abrogation of functional HOXB7/PBX2 dimers leads to reduced miR-221&222 transcription and elevated c-FOS expression with consequent cell death. Taking advantage of the treatment with the peptide HXR9, an antagonist of HOX/PBX dimerization, we recognize miR-221&222 as effectors of its action, in turn confirming the HXR9 efficacy in the treatment of human melanoma malignancy, whilst sparing normal human melanocytes. Our findings, besides suggesting the potential therapeutic of HXR9 or its derivatives in malignant melanoma, suggest the disruption of the HOXB7/PBX2 complexes, miR-221&222 inhibition or even better their combination, as innovative therapeutic approaches.


B4GALT1 Is a New Candidate to Maintain the Stemness of Lung Cancer Stem Cells.

  • Claudia De Vitis‎ et al.
  • Journal of clinical medicine‎
  • 2019‎

According to the cancer stem cells (CSCs) hypothesis, a population of cancer cells with stem cell properties is responsible for tumor propagation, drug resistance, and disease recurrence. Study of the mechanisms responsible for lung CSCs propagation is expected to provide better understanding of cancer biology and new opportunities for therapy.


MiR-378a-3p Acts as a Tumor Suppressor in Colorectal Cancer Stem-Like Cells and Affects the Expression of MALAT1 and NEAT1 lncRNAs.

  • Giorgia Castellani‎ et al.
  • Frontiers in oncology‎
  • 2022‎

MiR-378a-3p plays a critical role in carcinogenesis acting as a tumor suppressor, promoting apoptosis and cell cycle arrest and reducing invasion and drug resistance in several human cancers, including colorectal cancer (CRC), where its expression is significantly associated with histological classification and prognosis. In this study, we investigated the biological and cellular processes affected by miR-378a-3p in the context of CRC carcinogenesis. In agreement with the literature, miR-378a-3p is downregulated in our cohort of CRC patients as well as, in 15 patient-derived colorectal cancer stem-like cell (CRC-SC) lines and 8 CRC cell lines, compared to normal mucosae. Restoration of miR-378a-3p restrains tumorigenic properties of CRC and CRC-SC lines, as well as, significantly reduces tumor growth in two CRC-SC xenograft mouse models. We reported that miR-378a-3p modulates the expression of the lncRNAs MALAT1 and NEAT1. Their expression is inversely correlated with that of miR-378a-3p in patient-derived CRC-SC lines. Silencing of miR-378a-3p targets, MALAT1 and NEAT1, significantly impairs tumorigenic properties of CRC-SCs, supporting the critical role of miR-378a-3p in CRC carcinogenesis as a tumor-suppressor factor by establishing a finely tuned crosstalk with lncRNAs MALAT1 and NEAT1.


The Ultrastructural Analysis of Human Colorectal Cancer Stem Cell-Derived Spheroids and Their Mouse Xenograft Shows That the Same Cells Types Have Different Ratios.

  • Michela Relucenti‎ et al.
  • Biology‎
  • 2021‎

Spheroids from primary colorectal cancer cells and their mice xenografts have emerged as useful preclinical models for cancer research as they replicate tumor features more faithfully as compared to cell lines. While 3D models provide a reliable system for drug discovery and testing, their structural complexity represents a challenge and their structure-function relationships are only partly understood. Here, we present a comparative ultrastructural and flow citometric analysis of patient colorectal cancer-derived spheroids and their mice xenografts. Ultrastructural observations highlighted that multicellular spheroids and their xenografts contain the same cancer cell types but with different ratios, specifically multicellular spheroids were enriched in cells with a stem-like phenotype, while xenografts had an increased amount of lipid droplets-containing cells. The flow cytometric analysis for stem cell marker and activity showed enrichment of stem-like cells presence and activity in spheroids while xenografts had the inverse response. Our results evidence the effects on cancer cells of different in vitro and in vivo microenvironments. Those differences have to be paid into account in designing innovative experimental models for personalized drug testing.


HOXB1 restored expression promotes apoptosis and differentiation in the HL60 leukemic cell line.

  • Marina Petrini‎ et al.
  • Cancer cell international‎
  • 2013‎

Homeobox (HOX) genes deregulation has been largely implicated in the development of human leukemia. Among the HOXB cluster, HOXB1 was silent in a number of analyzed acute myeloid leukemia (AML) primary cells and cell lines, whereas it was expressed in normal terminally differentiated peripheral blood cells.


Integrin α7 Is a Functional Marker and Potential Therapeutic Target in Glioblastoma.

  • Tobias L Haas‎ et al.
  • Cell stem cell‎
  • 2017‎

Functionally relevant markers of glioblastoma stem-like cells (GSCs) have potential for therapeutic targeting to treat this aggressive disease. Here we used generation and screening of thousands of monoclonal antibodies to search for receptors and signaling pathways preferentially enriched in GSCs. We identified integrin α7 (ITGA7) as a major laminin receptor in GSCs and in primary high-grade glioma specimens. Analyses of mRNA profiles in comprehensive datasets revealed that high ITGA7 expression negatively correlated with survival of patients with both low- and high-grade glioma. In vitro and in vivo analyses showed that ITGA7 plays a key functional role in growth and invasiveness of GSCs. We also found that targeting of ITGA7 by RNAi or blocking mAbs impaired laminin-induced signaling, and it led to a significant delay in tumor engraftment plus a strong reduction in tumor size and invasion. Our data, therefore, highlight ITGA7 as a glioblastoma biomarker and candidate therapeutic target.


A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer.

  • Federica Francescangeli‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2020‎

Quiescent/slow cycling cells have been identified in several tumors and correlated with therapy resistance. However, the features of chemoresistant populations and the molecular factors linking quiescence to chemoresistance are largely unknown.


miR-1285-3p Controls Colorectal Cancer Proliferation and Escape from Apoptosis through DAPK2.

  • Lidia Villanova‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

MicroRNAs are tiny but powerful regulators of gene expression at the post-transcriptional level. Aberrant expression of oncogenic and tumor-suppressor microRNAs has been recognized as a common feature of human cancers. Colorectal cancer represents a major clinical challenge in the developed world and the design of innovative therapeutic approaches relies on the identification of novel biological targets. Here, we perform a functional screening in colorectal cancer cells using a library of locked nucleic acid (LNA)-modified anti-miRs in order to unveil putative oncogenic microRNAs whose inhibition yields a cytotoxic effect. We identify miR-1285-3p and further explore the effect of its targeting in both commercial cell lines and primary colorectal cancer stem cells, finding induction of cell cycle arrest and apoptosis. We show that DAPK2, a known tumor-suppressor, is a novel miR-1285 target and mediates both the anti-proliferative and the pro-apoptotic effects of miR-1285 depletion. Altogether, our findings uncover a novel oncogenic microRNA in colorectal cancer and lay the foundation for further studies aiming at the development of possible therapeutic strategies based on miR-1285 targeting.


Multi-omic approach identifies a transcriptional network coupling innate immune response to proliferation in the blood of COVID-19 cancer patients.

  • Andrea Sacconi‎ et al.
  • Cell death & disease‎
  • 2021‎

Clinical outcomes of COVID-19 patients are worsened by the presence of co-morbidities, especially cancer leading to elevated mortality rates. SARS-CoV-2 infection is known to alter immune system homeostasis. Whether cancer patients developing COVID-19 present alterations of immune functions which might contribute to worse outcomes have so far been poorly investigated. We conducted a multi-omic analysis of immunological parameters in peripheral blood mononuclear cells (PBMCs) of COVID-19 patients with and without cancer. Healthy donors and SARS-CoV-2-negative cancer patients were also included as controls. At the infection peak, cytokine multiplex analysis of blood samples, cytometry by time of flight (CyTOF) cell population analyses, and Nanostring gene expression using Pancancer array on PBMCs were performed. We found that eight pro-inflammatory factors (IL-6, IL-8, IL-13, IL-1ra, MIP-1a, IP-10) out of 27 analyzed serum cytokines were modulated in COVID-19 patients irrespective of cancer status. Diverse subpopulations of T lymphocytes such as CD8+T, CD4+T central memory, Mucosal-associated invariant T (MAIT), natural killer (NK), and γδ T cells were reduced, while B plasmablasts were expanded in COVID-19 cancer patients. Our findings illustrate a repertoire of aberrant alterations of gene expression in circulating immune cells of COVID-19 cancer patients. A 19-gene expression signature of PBMCs is able to discriminate COVID-19 patients with and without solid cancers. Gene set enrichment analysis highlights an increased gene expression linked to Interferon α, γ, α/β response and signaling which paired with aberrant cell cycle regulation in cancer patients. Ten out of the 19 genes, validated in a real-world consecutive cohort, were specific of COVID-19 cancer patients independently from different cancer types and stages of the diseases, and useful to stratify patients in a COVID-19 disease severity-manner. We also unveil a transcriptional network involving gene regulators of both inflammation response and proliferation in PBMCs of COVID-19 cancer patients.


Thymic Epithelial Tumors as a Model of Networking: Development of a Synergistic Strategy for Clinical and Translational Research Purposes.

  • Enrico Melis‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Among the group of thymic epithelial tumors (TET), thymomas often show either uncertain or explicit malignant biological behavior, local invasiveness, and intrathoracic relapse and are often difficult to manage. From the initial stages, thymic carcinomas tend to show aggressive behavior and extrathoracic spread. Moreover, the interplay of epithelial cells and thymocytes in thymomas causes complex immune derangement and related systemic autoimmune diseases. Due to their rare occurrence and to the limited funding opportunities available for rare tumors, it is challenging to make advances in clinical and translational research in TET. The authors of this paper are all members of a multidisciplinary clinical and research thoracic tumor team. Strong input was given to the team by long-standing expertise in TET in the Pathology Department. In addition, thanks to the collaboration between research units at our Institute as well as to national collaborations, over the last 10 years we were able to perform several tissue-based research studies. The most recent studies focused on microRNA and on functional studies on the thymic carcinoma cell line 1889c. The recent implementation of our biobank now provides us with a new tool for networking collaborative research activities. Moreover, the participation in a worldwide community such as ITMIG (International Thymic Malignancy Interest Group) has allowed us to significantly contribute toward fundamental projects/research both in tissue-based studies (The Cancer Genome Atlas) and in clinical studies (TNM staging of TET). Our achievements derive from constant commitment and long-standing experience in diagnosis and research in TET. New perspectives opened up due to the establishment of national [the Italian Collaborative Group for ThYmic MalignanciEs (TYME)] and European reference networks such as EURACAN, for an empowered joint clinical action in adult solid rare tumors. The challenge we face still lies in the advancement of clinical and basic science in thymic epithelial malignancies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: