Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

Central inhibitory effects on feeding induced by the adipo-myokine irisin.

  • Claudio Ferrante‎ et al.
  • European journal of pharmacology‎
  • 2016‎

Irisin, the soluble secreted form of fibronectin type III domain containing 5 (FNDC5)-cleaved product, is a recently identified adipo-myokine that has been indicated as a possible link between physical exercise and energetic homeostasis. The co-localization of irisin with neuropeptide Y in hypothalamic sections of paraventricular nucleus, which receives NPY/AgRP projections from the arcuate nucleus, suggests a possible role of irisin in the central regulation of energy balance. In this context, in the present work we studied the effects of intra-hypothalamic irisin (1μl, 50-200nmol/l) administration on feeding and orexigenic [agouti-related peptide (AgRP), neuropeptide Y (NPY) and orexin-A] and anorexigenic [cocaine and amphetamine-regulated transcript (CART) and proopiomelanocortin (POMC)] peptides in male Sprague-Dawley rats. Furthermore, we evaluated the effects of irisin on hypothalamic dopamine (DA), norepinephrine (NE) and serotonin (5-hydroxytryptamine, 5-HT) concentrations and plasma NE levels. Compared to vehicle, irisin injected rats showed decreased food intake, possibly mediated by stimulated CART and POMC and inhibited DA, NE and orexin-A, in the hypothalamus. We also found increased plasma NE levels, supporting a role for sympathetic nervous system stimulation in mediating increased oxygen consumption by irisin.


Qualitative Chemical Characterization and Multidirectional Biological Investigation of Leaves and Bark Extracts of Anogeissus leiocarpus (DC.) Guill. & Perr. (Combretaceae).

  • Giustino Orlando‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2019‎

Anogeissus leiocarpus (DC.) Guill. & Perr. (Combretaceae) has a long history of use by folk populations for the management of multiple human ailments. Based on the published literature, there has been no attempt to conduct a comparative assessment of the biological activity and the phytochemical profiles of the leaves and stem bark of A. leiocarpus extracted using methanol, ethyl acetate, and water. By high-performance liquid chromatography with electrospray ionization mass spectrometric detection (HPLC-ESI-MSn) analysis, quinic, shikimic, gallic, and protocatechuic acids were tentatively identified from all the extracts, while chlorogenic, caffeic, ferulic, and dodecanedioic acids were only characterised from the leaves extracts. Additionally, a pharmacological study was carried out to evaluate potential protective effects that are induced by the extracts in rat colon and colon cancer HCT116 cell line. In general, the methanol and water extracts of A. leiocarpus leaves and stem bark showed potent radical scavenging and reducing properties. It was noted that the stem bark extracts were more potent antioxidants as compared to the leaves extracts. The methanol extract of A. leiocarpus leaves showed the highest acetyl (4.68 mg galantamine equivalent/g) and butyryl (4.0 mg galantamine equivalent/g) cholinesterase inhibition. Among ethyl acetate extracts, the pharmacological investigation suggested stem bark ethyl acetate extracts to be the most promising. This extract revealed ability to protect rat colon from lipopolysaccharide-induced oxidative stress, without exerting promoting effects on HCT116 cell line viability and migration. As a conclusion, A. leiocarpus represents a potential source of bioactive compounds in the development of novel therapeutic agents.


Water Extract from Inflorescences of Industrial Hemp Futura 75 Variety as a Source of Anti-Inflammatory, Anti-Proliferative and Antimycotic Agents: Results from In Silico, In Vitro and Ex Vivo Studies.

  • Giustino Orlando‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2020‎

Industrial hemp (Cannabis sativa) is traditionally cultivated as a valuable source of fibers and nutrients. Multiple studies also demonstrated antimicrobial, anti-proliferative, phytotoxic and insecticide effects of the essential oil from hemp female inflorescences. On the other side, only a few studies explored the potential pharmacological application of polar extracts from inflorescences. In the present study, we investigated the water extract from inflorescences of industrial hemp Futura 75 variety, from phytochemical and pharmacological point of view. The water extract was assayed for phenolic compound content, radical scavenger/reducing, chelating and anti-tyrosinase effects. Through an ex vivo model of toxicity induced by lipopolysaccharide (LPS) on isolated rat colon and liver, we explored the extract effects on serotonin, dopamine and kynurenine pathways and the production of prostaglandin (PG)E2. Anti-proliferative effects were also evaluated against human colon cancer HCT116 cell line. Additionally, antimycotic effects were investigated against Trichophyton rubrum, Trichophyton interdigitale, Microsporum gypseum. Finally, in silico studies, including bioinformatics, network pharmacology and docking approaches were conducted in order to predict the putative targets underlying the observed pharmacological and microbiological effects. Futura 75 water extract was able to blunt LPS-induced reduction of serotonin and increase of dopamine and kynurenine turnover, in rat colon. Additionally, the reduction of PGE2 levels was observed in both colon and liver specimens, as well. The extract inhibited the HCT116 cell viability, the growth of T. rubrum and T. interdigitale and the activity of tyrosinase, in vitro, whereas in silico studies highlighting the inhibitions of cyclooxygenase-1 (induced by carvacrol), carbonic anhydrase IX (induced by chlorogenic acid and gallic acid) and lanosterol 14-α-demethylase (induced by rutin) further support the observed pharmacological and antimycotic effects. The present findings suggest female inflorescences from industrial hemp as high quality by-products, thus representing promising sources of nutraceuticals and cosmeceuticals against inflammatory and infectious diseases.


Multidirectional Pharma-Toxicological Study on Harpagophytum procumbens DC. ex Meisn.: An IBD-Focused Investigation.

  • Lucia Recinella‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2020‎

In the present study, we investigated the water extract of Harpagophytum procumbens DC. ex Meisn. in an experimental model of inflammatory bowel diseases (IBDs). Additionally, a microbiological investigation was carried out to discriminate the efficacy against bacterial and fungal strains involved in IBDs. Finally, an untargeted proteomic analysis was conducted on more than one hundred colon proteins involved in tissue morphology and metabolism. The extract was effective in blunting the production of oxidative stress and inflammation, including serotonin, prostaglandins, cytokines, and transcription factors. Additionally, the extract inhibited the growth of Candida albicans and C. tropicalis. The extract was also able to exert a pro-homeostatic effect on the levels of a wide plethora of colon proteins, thus corroborating a protective effect. Conversely, the supraphysiological downregulation of cytoskeletal-related proteins involved in tissue morphology and antimicrobial barrier function suggests a warning in the use of food supplements containing H. procumbens extracts.


Comparative Investigation of Composition, Antifungal, and Anti-Inflammatory Effects of the Essential Oil from Three Industrial Hemp Varieties from Italian Cultivation.

  • Giustino Orlando‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2021‎

Industrial hemp is characterized by a huge amount of by-products, such as inflorescences, that may represent high-quality sources of biomolecules with pharmaceutical interest. In the present study, we have evaluated the phytochemical profile, including terpene and terpenophenolic compounds, of the essential oils (EOs) of Futura 75, Carmagnola selezionata and Eletta campana hemp varieties. The EOs were also tested for antifungal properties toward Trichophyton mentagrophytes, Trichophyton rubrum, Arthroderma crocatum, Arthroderma quadrifidum, Arthroderma gypseum, Arthroderma curreyi, and Arthroderma insingulare. In parallel, we investigated the inhibitory effects of the EOs against tyrosinase, and the production of prostaglandin E2 in isolated mouse skin exposed to hydrogen peroxide. In human H1299 lung adenocarcinoma cells, we also evaluated the influence of the EOs on the gene expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2), which are involved in SARS-CoV-2 entry in human host. E-caryophyllene and α-pinene were the prominent terpenes in the EOs, whereas the cannabidiolic acid was the terpenophenol present at higher concentration. The EOs inhibited the growth of all tested dermatophytes species. In isolated skin specimens, EOs prevented the hydrogen-peroxide-induced synthesis of prostaglandin E2, consistent with the intrinsic antityrosinase activity. Finally, in H1299 cells, all tested EOs reduced the gene expression of ACE-2 and TMPRSS2, as well. Therefore, the present findings highlight the rationale for the use of the present EOs against infectious diseases.


Efficacy, safety, and immunogenicity of the Shigella sonnei 1790GAHB GMMA candidate vaccine: Results from a phase 2b randomized, placebo-controlled challenge study in adults.

  • Robert W Frenck‎ et al.
  • EClinicalMedicine‎
  • 2021‎

Shigellosis accounts for substantial morbidity and mortality worldwide and is the second most common cause of moderate and severe diarrhoea in children.


Novel Perceptions on Chemical Profile and Biopharmaceutical Properties of Mentha spicata Extracts: Adding Missing Pieces to the Scientific Puzzle.

  • Gokhan Zengin‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2022‎

Mentha spicata is one of the most popular species in the genus, and it is of great interest as a gastrointestinal and sedative agent in the folk medicine system. In this study, different M. spicata extracts, obtained by the use of four solvents (hexane, chloroform, acetone and acetone/water) were chemically characterized using HPLC-ESI-MS n, which allowed for identification of 27 phenolic compounds. The extracts' antioxidant and enzyme inhibitory properties were investigated. In addition, neuroprotective effects were evaluated in hypothalamic HypoE22 cells, and the ability of the extracts to prevent the hydrogen peroxide-induced degradation of dopamine and serotonin was observed. The best antioxidant effect was achieved for all the extraction methods using acetone/water as a solvent. These extracts were the richest in acacetin, eriodictyol, hesperidin, sagerinic acid, naringenin, luteolin, chlorogenic acid, chrysoeriol and apigenin. The intrinsic antioxidant and enzyme inhibition properties of the acetone/water extract could also explain, albeit partially, its efficacy in preventing prostaglandin E2 overproduction and dopamine depletion (82.9% turnover reduction) in HypoE22 cells exposed to hydrogen peroxide. Thus, our observations can provide a scientific confirmation of the neuromodulatory and neuroprotective effects of M. spicata.


Protective Effects of PollenAid Plus Soft Gel Capsules' Hydroalcoholic Extract in Isolated Prostates and Ovaries Exposed to Lipopolysaccharide.

  • Annalisa Chiavaroli‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Pollen extract represents an innovative approach for the management of the clinical symptoms related to prostatitis and pelvic inflammatory disease (PID). In this context, the aims of the present work were to analyze the phenolic composition of a hydroalcoholic extract of PollenAid Plus soft gel capsules, and to evaluate the extract's cytotoxic effects, in human prostate cancer PC3 cells and human ovary cancer OVCAR-3 cells. Additionally, protective effects were investigated in isolated prostate and ovary specimens exposed to lipopolysaccharide (LPS). The phytochemical investigation identified catechin, chlorogenic acid, gentisic acid, and 3-hydroxytyrosol as the prominent phenolics. The extract did not exert a relevant cytotoxic effect on PC3 and OVCAR-3 cells. However, the extract showed a dose-dependent inhibition of pro-inflammatory IL-6 and TNF-α gene expression in prostate and ovary specimens, and the extract was effective in preventing the LPS-induced upregulation of CAT and SOD gene expression, which are deeply involved in tissue antioxidant defense systems. Finally, a docking approach suggested the capability of catechin and chlorogenic acid to interact with the TRPV1 receptor, playing a master role in prostate inflammation. Overall, the present findings demonstrated anti-inflammatory and antioxidant effects of this formulation; thus, suggesting its capability in the management of the clinical symptoms related to prostatitis and PID.


Anti-Inflammatory, Antioxidant, and WAT/BAT-Conversion Stimulation Induced by Novel PPAR Ligands: Results from Ex Vivo and In Vitro Studies.

  • Lucia Recinella‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

Activation of peroxisome proliferator-activated receptors (PPARs) not only regulates multiple metabolic pathways, but mediates various biological effects related to inflammation and oxidative stress. We investigated the effects of four new PPAR ligands containing a fibrate scaffold-the PPAR agonists (1a (αEC50 1.0 μM) and 1b (γEC50 0.012 μM)) and antagonists (2a (αIC50 6.5 μM) and 2b (αIC50 0.98 μM, with a weak antagonist activity on γ isoform))-on proinflammatory and oxidative stress biomarkers. The PPAR ligands 1a-b and 2a-b (0.1-10 μM) were tested on isolated liver specimens treated with lipopolysaccharide (LPS), and the levels of lactate dehydrogenase (LDH), prostaglandin (PG) E2, and 8-iso-PGF2α were measured. The effects of these compounds on the gene expression of the adipose tissue markers of browning, PPARα, and PPARγ, in white adipocytes, were evaluated as well. We found a significant reduction in LPS-induced LDH, PGE2, and 8-iso-PGF2α levels after 1a treatment. On the other hand, 1b decreased LPS-induced LDH activity. Compared to the control, 1a stimulated uncoupling protein 1 (UCP1), PR-(PRD1-BF1-RIZ1 homologous) domain containing 16 (PRDM16), deiodinase type II (DIO2), and PPARα and PPARγ gene expression, in 3T3-L1 cells. Similarly, 1b increased UCP1, DIO2, and PPARγ gene expression. 2a-b caused a reduction in the gene expression of UCP1, PRDM16, and DIO2 when tested at 10 μM. In addition, 2a-b significantly decreased PPARα gene expression. A significant reduction in PPARγ gene expression was also found after 2b treatment. The novel PPARα agonist 1a might be a promising lead compound and represents a valuable pharmacological tool for further assessment. The PPARγ agonist 1b could play a minor role in the regulation of inflammatory pathways.


A next-generation GMMA-based vaccine candidate to fight shigellosis.

  • Omar Rossi‎ et al.
  • NPJ vaccines‎
  • 2023‎

Shigellosis is a leading cause of diarrheal disease in low-middle-income countries (LMICs). Effective vaccines will help to reduce the disease burden, exacerbated by increasing antibiotic resistance, in the most susceptible population represented by young children. A challenge for a broadly protective vaccine against shigellosis is to cover the most epidemiologically relevant serotypes among >50 Shigella serotypes circulating worldwide. The GMMA platform has been proposed as an innovative delivery system for Shigella O-antigens, and we have developed a 4-component vaccine against S. sonnei, S. flexneri 1b, 2a and 3a identified among the most prevalent Shigella serotypes in LMICs. Driven by the immunogenicity results obtained in clinic with a first-generation mono-component vaccine, a new S. sonnei GMMA construct was generated and combined with three S. flexneri GMMA in a 4-component Alhydrogel formulation (altSonflex1-2-3). This formulation was highly immunogenic, with no evidence of negative antigenic interference in mice and rabbits. The vaccine induced bactericidal antibodies also against heterologous Shigella strains carrying O-antigens different from those included in the vaccine. The Monocyte Activation Test used to evaluate the potential reactogenicity of the vaccine formulation revealed no differences compared to the S. sonnei mono-component vaccine, shown to be safe in several clinical trials in adults. A GLP toxicology study in rabbits confirmed that the vaccine was well tolerated. The preclinical study results support the clinical evaluation of altSonflex1-2-3 in healthy populations, and a phase 1-2 clinical trial is currently ongoing.


Downregulation of NOX4 expression by roflumilast N-oxide reduces markers of fibrosis in lung fibroblasts.

  • Daniela Vecchio‎ et al.
  • Mediators of inflammation‎
  • 2013‎

The phosphodiesterase 4 inhibitor roflumilast prevents bleomycin- (BLM-) induced lung fibrosis in animal models. However, its mechanism of action remains unknown. We investigated whether roflumilast N-oxide (RNO), the active metabolite of roflumilast, can modulate in vitro the oxidative effects of BLM on human lung fibroblasts (HLF). In addition, since BLM increases the production of F₂-isoprostanes that have per se fibrogenic activity, the effect of RNO on oxidative stress and fibrogenesis induced by the F₂-isoprostane 8-epi-PGF₂α was investigated. HLF were preincubated either with the vehicle or with RNO and exposed to either BLM or 8-epi-PGF₂α. Proliferation and collagen synthesis were assessed as [(3)H]-thymidine and [(3)H]-proline incorporation. Reactive oxygen species (ROS) and F₂-isoprostanes were measured. NADPH oxidase 4 (NOX4) protein and mRNA were also evaluated. BLM increased both cell proliferation and collagen synthesis and enhanced ROS and F₂-isoprostane production. These effects were significantly prevented by RNO. Also, RNO significantly reduced the increase in both NOX4 mRNA and protein, induced by BLM. Finally, 8-epi-PGF₂α   per se stimulated HLF proliferation, collagen synthesis, and NOX4 expression and ROS generation, and RNO prevented these effects. Thus, the antifibrotic effect of RNO observed in vivo may be related to its ability to mitigate ROS generation via downregulation of NOX4.


Metabolomic Profile and Antioxidant/Anti-Inflammatory Effects of Industrial Hemp Water Extract in Fibroblasts, Keratinocytes and Isolated Mouse Skin Specimens.

  • Viviana di Giacomo‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2021‎

Industrial hemp is a multiuse crop whose phytocomplex includes terpenophenolics and flavonoids. In the present study, the phenolic and terpenophenolic compounds were assayed in the water extract of the hemp variety Futura 75. Protective effects were also investigated in human fibroblast and keratinocytes and isolate mouse skin specimens, which were exposed to hydrogen peroxide and/or to the extract (1-500 µg/mL). The results of phytochemical analysis suggested the cannabidiol, cannabidiolic acid and rutin as the prominent phytocompounds. In the in vitro system represented by human keratinocytes and fibroblasts, the hemp extract was found to be able to protect cells from cytotoxicity and apoptosis induced by oxidative stress. Moreover, modulatory effects on IL-6, a key mediator in skin proliferation, were found. In isolated rat skin, the extract reduced hydrogen peroxide-induced l-dopa turnover, prostaglandin-E2 production and the ratio kynurenine/tryptpophan, thus corroborating anti-inflammatory/antioxidant effects. The in silico docking studies also highlighted the putative interactions between cannabidiol, cannabidiolic acid and rutin with tyrosinase and indoleamine-2,3-dioxygenase, involved in l-dopa turnover and tryptophan conversion in kynurenine, respectively. In conclusion, the present findings showed the efficacy of hemp water extract as a skin protective agent. This could be partly related to the extract content in cannabidiol, cannabidiolic acid and rutin.


Biopotential of Bersama abyssinica Fresen Stem Bark Extracts: UHPLC Profiles, Antioxidant, Enzyme Inhibitory, and Antiproliferative Propensities.

  • Kouadio Ibrahime Sinan‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2020‎

In this study, ethyl acetate, methanol, and water extracts of Bersama abyssinica (Melianthaceae) stem bark were screened for enzyme inhibitory and antioxidant properties. The water extract possessed the highest concentration of phenols (230.83 mg gallic acid equivalent/g extract), while the methanol extract was rich in flavonoids (75.82 mg rutin equivalent/g extract), and the ethyl acetate extract possessed the highest amount of saponins (97.37 mg quillaja equivalent/g). The aim of this study was to investigate the antiproliferative effects against the human colon cancer HCT116 cell line challenged with serotonin (5-HT) as a stimulating-proliferation factor. The level of HCT116 cell-deriving pool of kynurenic acid (KA) was also assessed. The UHPLC results confirmed the presence of 58, 68, and 63 compounds in the ethyl acetate, methanol, and water extracts, respectively. Mangiferin, vitexin and its isomer isovitexin were tentatively identified in all extracts and KA (m/z 190.05042 [M-H]+) was also tentatively identified in the methanol and water extracts. The methanol extract (1464.08 mg Trolox equivalent [TE]/g extract) showed the highest activity in the CUPRAC assay, whereas the water extract (1063.70 mg TE/g extract) showed the highest activity with the FRAP technique. The ethyl acetate extract was the most active acetylcholinesterase (4.43 mg galantamine equivalent/g extract) and α-glucosidase (mmol acarbose equivalent /g extract) inhibitor. The water extract was able to inhibit 5-HT-stimulated viability of HCT116 cells, and blunt 5-HT-induced reduction of cell-deriving KA. The scientific data generated in this study provide baseline data regarding the biological properties of B. abyssinica stem bark, highlighting its potential use for the development of new pharmaceutic and cosmetic agents.


New Biological and Chemical Evidences of Two Lamiaceae Species (Thymbra capitata and Thymus sipyleus subsp. rosulans): In Vitro, In Silico and Ex Vivo Approaches.

  • Eulogio J Llorent-Martínez‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

In this study, the methanolic and infusion extracts of two species, Thymbra capitata and Thymus sipyleus subsp. rosulans, were tested for their chemical composition and biological abilities (antioxidant, enzyme inhibitory and anti-inflammatory effects). The extracts yielded total phenolic and flavonoid contents in the range of 83.43-127.52 mg GAE/g and 9.41-46.34 mg RE/g, respectively. HPLC analysis revealed rosmarinic acid to be a major component of the studied extracts (15.85-26.43%). The best ABTS radical scavenging ability was observed in the methanol extract of T. capitata with 379.11 mg TE/g, followed by in the methanol extract of T. sipylus (360.93 mg TE/g). In the CUPRAC assay, the highest reducing ability was also found in the methanol extract of T. capitata with 802.22 mg TE/g. The phosphomolybdenum ability ranged from 2.39 to 3.61 mmol TE/g. In terms of tyrosinase inhibitory effects, the tested methanol extracts (83.18-89.66 mg KAE/g) were higher than the tested water extracts (18.74-19.11 mg KAE/g). Regarding the BChE inhibitory effects, the methanol extracts were active on the enzyme while the water extracts showed no inhibitory effect on it. Overall, the methanolic extracts showed better enzyme inhibition compared to the infusion extracts. Molecular docking also showed the selected exhibited potential binding affinities with all enzymes, with a preference for cholinesterases. Additionally, the extracts were effective in attenuating the LPS-induced increase in COX-2 and IL-6 gene expression in isolated colon, thus indicating promising anti-inflammatory effects. The preliminary results of this study suggest that these species are good natural sources of antioxidants and also provide some scope as enzyme inhibitors, most likely due to their bioactive contents such as phenolic acids, and thus can be exploited for different applications related to health promotion and disease prevention.


A grape (Vitis vinifera L.) pomace water extract modulates inflammatory and immune response in SW-480 cells and isolated mouse colon.

  • Lucia Recinella‎ et al.
  • Phytotherapy research : PTR‎
  • 2022‎

Grape (Vitis vinifera L.) pomace is a residue derived from the winemaking process, which contains bioactive compounds displaying noteworthy health-promoting properties. The aim of the present study was to investigate the phenolic composition and protective effects of a water extract of grape pomace (WEGP) in colorectal cancer cell line SW480 and in isolated mouse colon exposed to Escherichia coli lipopolysaccharide (LPS). The extract decreased SW-480 cell viability, as well as vascular endothelial factor A (VEGFA), hypoxia-induced factor 1α (HIF1α), and transient receptor potential M8 (TRPM8) LPS-induced gene expression. Moreover, the extract inhibited mRNA levels of nuclear factor kB (NFkB), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)α, interleukin (IL)-6, IL-1β, IL-10, inducible nitric oxide synthase (iNOS), and interferon (IFN)γ, in isolated colon. Conversely, WEGP increased the gene expression of antioxidant catalase (CAT) and superoxide dismutase (SOD), in the same model. The modulatory effects exerted by WEGP could be related, at least in part, to the phenolic composition, with particular regards to the catechin level. Docking calculations also predicted the interactions of catechin toward TRPM8 receptor, deeply involved in colon cancer; thus further suggesting the grape pomace as a valuable source of bioactive extracts and phytochemicals with protective effects in the colon.


Protective effects of growth hormone-releasing hormone analogs in DSS-induced colitis in mice.

  • Lucia Recinella‎ et al.
  • Scientific reports‎
  • 2021‎

Besides its metabolic and endocrine effects, growth hormone (GH)-releasing hormone (GHRH) is involved in the modulation of inflammation. Recently synthetized GHRH antagonist MIA-690 and MR-409, GHRH agonist, developed by us have shown potent pharmacological effects in various experimental paradigms. However, whether their administration modify resistance to chronic inflammatory stimuli in colon is still unknown. Ex vivo results demonstrated that MIA-690 and MR-409 inhibited production of pro-inflammatory and oxidative markers induced by lipopolysaccharide on isolated mouse colon specimens. In vivo, both MIA-690 and MR-409 have also been able to decrease the responsiveness to nociceptive stimulus, in hot plate test. Additionally, both peptides also induced a decreased sensitivity to acute and persistent inflammatory stimuli in male mice, in formalin test and dextran sodium sulfate (DSS)-induced colitis model, respectively. MIA-690 and MR-409 attenuate DSS-induced colitis with particular regard to clinical manifestations, histopathological damage and release of pro-inflammatory and oxidative markers in colon specimens. Respect to MR-409, MIA-690 showed higher efficacy in inhibiting prostaglandin (PG)E2, 8-iso-PGF2α and serotonin (5-HT) levels, as well as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and nitric oxide synthase gene expression in colon specimens of DSS-induced colitis. Furthermore, MIA-690 decreased serum insulin-like growth factor (IGF)-1 levels in mice DSS-treated, respect to MR-409. Thus, our findings highlight the protective effects of MIA-690 and MR-409 on inflammation stimuli. The higher antinflammatory and antioxidant activities observed with MIA-690 could be related to decreased serum IGF-1 levels.


Protective Effects Induced by a Hydroalcoholic Allium sativum Extract in Isolated Mouse Heart.

  • Lucia Recinella‎ et al.
  • Nutrients‎
  • 2021‎

The aim of the present study was to investigate the possible protective effects of a garlic hydroalcoholic extract on the burden of oxidative stress and inflammation occurring on mouse heart specimens exposed to E. coli lipopolysaccharide (LPS), which is a well-established inflammatory stimulus. Headspace solid-phase microextraction combined with the gas chromatography-mass spectrometry (HS-SPME/GC-MS) technique was applied to determine the volatile fraction of the garlic powder, and the HS-SPME conditions were optimized for each of the most representative classes of compounds. CIEL*a*b* colorimetric analyses were performed on the powder sample at the time of delivery, after four and after eight months of storage at room temperature in the dark, to evaluate the color changing. Freshly prepared hydroalcoholic extract was also evaluated in its color character. Furthermore, the hydroalcoholic extract was analyzed through GC-MS. The extract was found to be able to significantly inhibit LPS-induced prostaglandin (PG) E2 and 8-iso-PGF2α levels, as well as mRNA levels of cyclooxygenase (COX)-2, interleukin (IL)-6, and nuclear factor-kB (NF-kB), in heart specimens. Concluding, our findings showed that the garlic hydroalcoholic extract exhibited cardioprotective effects on multiple inflammatory and oxidative stress pathways.


Untargeted Metabolomics Used to Describe the Chemical Composition, Antioxidant and Antimicrobial Effects of Extracts from Pleurotus spp. Mycelium Grown in Different Culture Media.

  • Giancarlo Angeles Flores‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2022‎

Pleurotus species isolated in vitro were studied to determine the effect of different media on their production of secondary metabolites, antimicrobial, and antioxidant activity. The different metabolites among Pleurotus samples covered a total of 58 pathways. Comparisons were made between the metabolic profiles of Pleurotus spp. mycelia grown in two substrates: Potato-dextrose-agar-PDA, used as control (S1), and PDA enriched with 0.5 % of wheat straw (S2). The main finding was that the metabolic pathways are strongly influenced by the chemical composition of the growth substrate. The antibacterial effects were particularly evident against Escherichia coli, whereas Arthroderma curreyi (CCF 5207) and Trichophyton rubrum (CCF 4933) were the dermatophytes more sensitive to the mushroom extracts. The present study supports more in-depth investigations, aimed at evaluating the influence of growth substrate on Pleurotus spp. antimicrobial and antioxidant properties.


Novel Simple Conjugation Chemistries for Decoration of GMMA with Heterologous Antigens.

  • Roberta Di Benedetto‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Outer Membrane Vesicles (OMV) constitute a promising platform for the development of efficient vaccines. OMV can be decorated with heterologous antigens (proteins or polysaccharides), becoming attractive novel carriers for the development of multicomponent vaccines. Chemical conjugation represents a tool for linking antigens, also from phylogenetically distant pathogens, to OMV. Here we develop two simple and widely applicable conjugation chemistries targeting proteins or lipopolysaccharides on the surface of Generalized Modules for Membrane Antigens (GMMA), OMV spontaneously released from Gram-negative bacteria mutated to increase vesicle yield and reduce potential reactogenicity. A Design of Experiment approach was used to identify optimal conditions for GMMA activation before conjugation, resulting in consistent processes and ensuring conjugation efficiency. Conjugates produced by both chemistries induced strong humoral response against the heterologous antigen and GMMA. Additionally, the use of the two orthogonal chemistries allowed to control the linkage of two different antigens on the same GMMA particle. This work supports the further advancement of this novel platform with great potential for the design of effective vaccines.


Shedding Light into the Connection between Chemical Components and Biological Effects of Extracts from Epilobium hirsutum: Is It a Potent Source of Bioactive Agents from Natural Treasure?

  • Gunes Ak‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2021‎

Epilobium hirsutum is extensively used as a traditional remedy in folk medicine, especially against prostate inflammation. Therefore, we evaluated the chemical profiles and biopharmaceutical potentials of different extracts of E. hirsutum aerial parts and roots. Metabolomic, antioxidant, and enzyme inhibitory profiles were investigated. Human prostate cancer PC3 cells were exposed to the extracts to evaluate antiproliferative effects. Gene expression and bioinformatics analyses were performed to investigate anti-inflammatory mechanisms. Oenothein B and myricetin were prominent compounds in the extracts. In scavenging/reducing assays, the methanol, infusion, and methanol/water extracts exhibited similar activities. We also observed the reduction of PC3 viability occurring following exposure to methanol and methanol/water extracts. According to bioinformatics analysis, myricetin was predicted to interact with COX-2 and TNFα. The interaction between TNFα and oxo-dihydroxy-octadecenoic acid was predicted as well. Intriguingly, the gene expression of COX-2 and TNFα was reduced in PC3 cells after exposure to methanol and methanol/water extracts. These effects were paralleled by the decreased gene expression of IL-8 and NFkB and the inhibition of PGE2 release. Therefore, the present findings suggest the potential use of E. hirsutum for the management of the burden of inflammation and oxidative stress occurring in lower urinary tract diseases, including prostatitis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: