Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 66 papers

Duplicated genes evolve slower than singletons despite the initial rate increase.

  • I King Jordan‎ et al.
  • BMC evolutionary biology‎
  • 2004‎

Gene duplication is an important mechanism that can lead to the emergence of new functions during evolution. The impact of duplication on the mode of gene evolution has been the subject of several theoretical and empirical comparative-genomic studies. It has been shown that, shortly after the duplication, genes seem to experience a considerable relaxation of purifying selection.


Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies.

  • Hao Zhu‎ et al.
  • Nature genetics‎
  • 2010‎

Recently, genome-wide association studies have implicated the human LIN28B locus in regulating height and the timing of menarche. LIN28B and its homolog LIN28A are functionally redundant RNA-binding proteins that block biogenesis of let-7 microRNAs. lin-28 and let-7 were discovered in Caenorhabditis elegans as heterochronic regulators of larval and vulval development but have recently been implicated in cancer, stem cell aging and pluripotency. The let-7 targets Myc, Kras, Igf2bp1 and Hmga2 are known regulators of mammalian body size and metabolism. To explore the function of the Lin28-Let-7 pathway in vivo, we engineered transgenic mice to express Lin28a and observed in them increased body size, crown-rump length and delayed onset of puberty. Investigation of metabolic and endocrine mechanisms of overgrowth in these transgenic mice revealed increased glucose metabolism and insulin sensitivity. Here we report a mouse that models the human phenotypes associated with genetic variation in the Lin28-Let-7 pathway.


A method for visualization of "omic" datasets for sphingolipid metabolism to predict potentially interesting differences.

  • Amin A Momin‎ et al.
  • Journal of lipid research‎
  • 2011‎

Sphingolipids are structurally diverse and their metabolic pathways highly complex, which makes it difficult to follow all of the subspecies in a biological system, even using "lipidomic" approaches. This report describes a method to use transcriptomic data to visualize and predict potential differences in sphingolipid composition, and it illustrates its use with published data for cancer cell lines and tumors. In addition, several novel sphingolipids that were predicted to differ between MDA-MB-231 and MCF7 cells based on published microarray data for these breast cancer cell lines were confirmed by mass spectrometry. For the data that we were able to find for these comparisons, there was a significant match between the gene expression data and sphingolipid composition (P < 0.001 by Fisher's exact test). Upon considering the large number of gene expression datasets produced in recent years, this simple integration of two types of "omic" technologies ("transcriptomics" to direct "sphingolipidomics") might facilitate the discovery of useful relationships between sphingolipid metabolism and disease, such as the identification of new biomarkers.


Ancestry, admixture and fitness in Colombian genomes.

  • Lavanya Rishishwar‎ et al.
  • Scientific reports‎
  • 2015‎

The human dimension of the Columbian Exchange entailed substantial genetic admixture between ancestral source populations from Africa, the Americas and Europe, which had evolved separately for many thousands of years. We sought to address the implications of the creation of admixed American genomes, containing novel allelic combinations, for human health and fitness via analysis of an admixed Colombian population from Medellin. Colombian genomes from Medellin show a wide range of three-way admixture contributions from ancestral source populations. The primary ancestry component for the population is European (average = 74.6%, range = 45.0%-96.7%), followed by Native American (average = 18.1%, range = 2.1%-33.3%) and African (average = 7.3%, range = 0.2%-38.6%). Locus-specific patterns of ancestry were evaluated to search for genomic regions that are enriched across the population for particular ancestry contributions. Adaptive and innate immune system related genes and pathways are particularly over-represented among ancestry-enriched segments, including genes (HLA-B and MAPK10) that are involved in defense against endemic pathogens such as malaria. Genes that encode functions related to skin pigmentation (SCL4A5) and cutaneous glands (EDAR) are also found in regions with anomalous ancestry patterns. These results suggest the possibility that ancestry-specific loci were differentially retained in the modern admixed Colombian population based on their utility in the New World environment.


Delineating monoclonal antibody specificity by mass spectrometry.

  • Dimitrios Korbakis‎ et al.
  • Journal of proteomics‎
  • 2015‎

Generation of monoclonal antibody (mAb) libraries against antigens in complex matrices can prove a valuable analytical tool. However, delineating the specificity of newly generated antibodies is the limiting step of the procedure. Here, we propose a strategy for mAb production by injecting mice with complex biological fluid and mAb characterization by coupling immunoaffinity techniques with Mass spectrometry (immuno-MS). Mice were immunized against fractionated seminal plasma and mAbs were produced. Different immuno-MS protocols based on four types of solid support (i.e. polystyrene microtiter plates, NHS-activated agarose beads, tosyl-activated magnetic beads and MSIA™ pipette tips) were established. A well-characterized mouse monoclonal anti-KLK3 (PSA) Ab was used as a model to evaluate each protocol's robustness and reproducibility and to establish a set of criteria which would allow antigen characterization of newly developed Abs. Three of the newly generated Abs were analyzed using our optimized protocols. Analysis revealed that all assay configurations used were capable of antibody characterization. Furthermore, low-abundance antigens (e.g. ribonuclease T2) could be identified as efficiently as the high-abundance ones. Our data suggest that complex biological samples can be used for the production of mAbs, which will facilitate the analysis of their proteome, while the established immuno-MS protocols can offer efficient mAb characterization.


Epigenetic regulation of human cis-natural antisense transcripts.

  • Andrew B Conley‎ et al.
  • Nucleic acids research‎
  • 2012‎

Mammalian genomes encode numerous cis-natural antisense transcripts (cis-NATs). The extent to which these cis-NATs are actively regulated and ultimately functionally relevant, as opposed to transcriptional noise, remains a matter of debate. To address this issue, we analyzed the chromatin environment and RNA Pol II binding properties of human cis-NAT promoters genome-wide. Cap analysis of gene expression data were used to identify thousands of cis-NAT promoters, and profiles of nine histone modifications and RNA Pol II binding for these promoters in ENCODE cell types were analyzed using chromatin immunoprecipitation followed by sequencing (ChIP-seq) data. Active cis-NAT promoters are enriched with activating histone modifications and occupied by RNA Pol II, whereas weak cis-NAT promoters are depleted for both activating modifications and RNA Pol II. The enrichment levels of activating histone modifications and RNA Pol II binding show peaks centered around cis-NAT transcriptional start sites, and the levels of activating histone modifications at cis-NAT promoters are positively correlated with cis-NAT expression levels. Cis-NAT promoters also show highly tissue-specific patterns of expression. These results suggest that human cis-NATs are actively transcribed by the RNA Pol II and that their expression is epigenetically regulated, prerequisites for a functional potential for many of these non-coding RNAs.


The Phenotypic Consequences of Genetic Divergence between Admixed Latin American Populations: Antioquia and Chocó, Colombia.

  • Aroon T Chande‎ et al.
  • Genome biology and evolution‎
  • 2020‎

Genome-wide association studies have uncovered thousands of genetic variants that are associated with a wide variety of human traits. Knowledge of how trait-associated variants are distributed within and between populations can provide insight into the genetic basis of group-specific phenotypic differences, particularly for health-related traits. We analyzed the genetic divergence levels for 1) individual trait-associated variants and 2) collections of variants that function together to encode polygenic traits, between two neighboring populations in Colombia that have distinct demographic profiles: Antioquia (Mestizo) and Chocó (Afro-Colombian). Genetic ancestry analysis showed 62% European, 32% Native American, and 6% African ancestry for Antioquia compared with 76% African, 10% European, and 14% Native American ancestry for Chocó, consistent with demography and previous results. Ancestry differences can confound cross-population comparison of polygenic risk scores (PRS); however, we did not find any systematic bias in PRS distributions for the two populations studied here, and population-specific differences in PRS were, for the most part, small and symmetrically distributed around zero. Both genetic differentiation at individual trait-associated single nucleotide polymorphisms and population-specific PRS differences between Antioquia and Chocó largely reflected anthropometric phenotypic differences that can be readily observed between the populations along with reported disease prevalence differences. Cases where population-specific differences in genetic risk did not align with observed trait (disease) prevalence point to the importance of environmental contributions to phenotypic variance, for both infectious and complex, common disease. The results reported here are distributed via a web-based platform for searching trait-associated variants and PRS divergence levels at http://map.chocogen.com (last accessed August 12, 2020).


A decade of viral mutations and associated drug resistance in a population of HIV-1+ Puerto Ricans: 2002-2011.

  • Lycely Del C Sepúlveda-Torres‎ et al.
  • PloS one‎
  • 2017‎

Puerto Rico has one of the highest rates of HIV/AIDS seen for any US state or territory, and antiretroviral therapy has been a mainstay of efforts to mitigate the HIV/AIDS public health burden on the island. We studied the evolutionary dynamics of HIV-1 mutation and antiretroviral drug resistance in Puerto Rico by monitoring the population frequency of resistance-associated mutations from 2002 to 2011. Whole blood samples from 4,475 patients were analyzed using the TRUGENE HIV-1 Genotyping Kit and OpenGene DNA Sequencing System in the Immunoretrovirus Research Laboratory at Universidad Central del Caribe. Results show that 64.0% of female and 62.9% of male patients had HIV-1 mutations that confer resistance to at least one antiretroviral medication. L63P and M184V were the dominant mutations observed for the protease (PRO) and reverse transcriptase (RT) encoding genes, respectively. Specific resistance mutations, along with their associated drug resistance profiles, can be seen to form temporal clusters that reveal a steadily changing landscape of resistance trends over time. Both women and men showed resistance mutations for an average of 4.8 drugs over the 10-year period, further underscoring the strong selective pressure exerted by antiretrovirals along with the rapid adaptive response of HIV. Nevertheless, both female and male patients showed a precipitous decrease for overall drug resistance, and for PRO mutations in particular, over the entire course of the study, with the most rapid decrease in frequency seen after 2006. The reduced HIV-1 mutation and drug resistance trends that we observed are consistent with previous reports from multi-year studies conducted around the world. Reduced resistance can be attributed to the use of more efficacious antiretroviral drug therapy, including the introduction of multi-drug combination therapies, which limited the ability of the virus to mount rapid adaptive responses to antiretroviral selection pressure.


Assortative Mating on Ancestry-Variant Traits in Admixed Latin American Populations.

  • Emily T Norris‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Assortative mating is a universal feature of human societies, and individuals from ethnically diverse populations are known to mate assortatively based on similarities in genetic ancestry. However, little is currently known regarding the exact phenotypic cues, or their underlying genetic architecture, which inform ancestry-based assortative mating. We developed a novel approach, using genome-wide analysis of ancestry-specific haplotypes, to evaluate ancestry-based assortative mating on traits whose expression varies among the three continental population groups - African, European, and Native American - that admixed to form modern Latin American populations. Application of this method to genome sequences sampled from Colombia, Mexico, Peru, and Puerto Rico revealed widespread ancestry-based assortative mating. We discovered a number of anthropometric traits (body mass, height, and facial development) and neurological attributes (educational attainment and schizophrenia) that serve as phenotypic cues for ancestry-based assortative mating. Major histocompatibility complex (MHC) loci show population-specific patterns of both assortative and disassortative mating in Latin America. Ancestry-based assortative mating in the populations analyzed here appears to be driven primarily by African ancestry. This study serves as an example of how population genomic analyses can yield novel insights into human behavior.


Genetic ancestry, admixture and health determinants in Latin America.

  • Emily T Norris‎ et al.
  • BMC genomics‎
  • 2018‎

Modern Latin American populations were formed via genetic admixture among ancestral source populations from Africa, the Americas and Europe. We are interested in studying how combinations of genetic ancestry in admixed Latin American populations may impact genomic determinants of health and disease. For this study, we characterized the impact of ancestry and admixture on genetic variants that underlie health- and disease-related phenotypes in population genomic samples from Colombia, Mexico, Peru, and Puerto Rico.


Ancestry effects on type 2 diabetes genetic risk inference in Hispanic/Latino populations.

  • Aroon T Chande‎ et al.
  • BMC medical genetics‎
  • 2020‎

Hispanic/Latino (HL) populations bear a disproportionately high burden of type 2 diabetes (T2D). The ability to predict T2D genetic risk using polygenic risk scores (PRS) offers great promise for improved screening and prevention. However, there are a number of complications related to the accurate inference of genetic risk across HL populations with distinct ancestry profiles. We investigated how ancestry affects the inference of T2D genetic risk using PRS in diverse HL populations from Colombia and the United States (US). In Colombia, we compared T2D genetic risk for the Mestizo population of Antioquia to the Afro-Colombian population of Chocó, and in the US, we compared European-American versus Mexican-American populations.


Genomic Diversity of Azole-Resistant Aspergillus fumigatus in the United States.

  • Kizee A Etienne‎ et al.
  • mBio‎
  • 2021‎

Azole resistance in pathogenic Aspergillus fumigatus has become a global public health issue threatening the use of medical azoles. The environmentally occurring resistance mutations, TR34/L98H (TR34) and TR46/Y121F/T289A (TR46), are widespread across multiple continents and emerging in the United States. We used whole-genome single nucleotide polymorphism (SNP) analysis on 179 nationally represented clinical and environmental A. fumigatus genomes from the United States along with 18 non-U.S. genomes to evaluate the genetic diversity and foundation of the emergence of azole resistance in the United States. We demonstrated the presence of clades of A. fumigatus isolates: clade A (17%) comprised a global collection of clinical and environmental azole-resistant strains, including all strains with the TR34/L98H allele from India, The Netherlands, the United Kingdom, and the United States, and clade B (83%) consisted of isolates without this marker mainly from the United States. The TR34/L98H polymorphism was shared among azole-resistant A. fumigatus strains from India, The Netherlands, the United Kingdom, and the United States, suggesting the common origin of this resistance mechanism. Six percent of azole-resistant A. fumigatus isolates from the United States with the TR34 resistance marker had a mixture of clade A and clade B alleles, suggestive of recombination. Additionally, the presence of equal proportions of both mating types further suggests the ongoing presence of recombination. This study demonstrates the genetic background for the emergence of azole resistance in the United States, supporting a single introduction and subsequent propagation, possibly through recombination of environmentally driven resistance mutations. IMPORTANCE Aspergillus fumigatus is one of the most common causes of invasive mold infections in patients with immune deficiencies and has also been reported in patients with severe influenza and severe acute respiratory syndrome coronavirus 2 (SARs-CoV-2). Triazole drugs are the first line of therapy for this infection; however, their efficacy has been compromised by the emergence of azole resistance in A. fumigatus, which was proposed to be selected for by exposure to azole fungicides in the environment [P. E. Verweij, E. Snelders, G. H. J. Kema, E. Mellado, et al., Lancet Infect Dis 9:789-795, 2009, https://doi.org/10.1016/S1473-3099(09)70265-8]. Isolates with environmentally driven resistance mutations, TR34/L98H (TR34) and TR46/Y121F/T289A (TR46), have been reported worldwide. Here, we used genomic analysis of a large sample of resistant and susceptible A. fumigatus isolates to demonstrate a single introduction of TR34 in the United States and suggest its ability to spread into the susceptible population is through recombination between resistant and susceptible isolates.


Transcriptional activity, chromosomal distribution and expression effects of transposable elements in Coffea genomes.

  • Fabrício R Lopes‎ et al.
  • PloS one‎
  • 2013‎

Plant genomes are massively invaded by transposable elements (TEs), many of which are located near host genes and can thus impact gene expression. In flowering plants, TE expression can be activated (de-repressed) under certain stressful conditions, both biotic and abiotic, as well as by genome stress caused by hybridization. In this study, we examined the effects of these stress agents on TE expression in two diploid species of coffee, Coffea canephora and C. eugenioides, and their allotetraploid hybrid C. arabica. We also explored the relationship of TE repression mechanisms to host gene regulation via the effects of exonized TE sequences. Similar to what has been seen for other plants, overall TE expression levels are low in Coffea plant cultivars, consistent with the existence of effective TE repression mechanisms. TE expression patterns are highly dynamic across the species and conditions assayed here are unrelated to their classification at the level of TE class or family. In contrast to previous results, cell culture conditions per se do not lead to the de-repression of TE expression in C. arabica. Results obtained here indicate that differing plant drought stress levels relate strongly to TE repression mechanisms. TEs tend to be expressed at significantly higher levels in non-irrigated samples for the drought tolerant cultivars but in drought sensitive cultivars the opposite pattern was shown with irrigated samples showing significantly higher TE expression. Thus, TE genome repression mechanisms may be finely tuned to the ideal growth and/or regulatory conditions of the specific plant cultivars in which they are active. Analysis of TE expression levels in cell culture conditions underscored the importance of nonsense-mediated mRNA decay (NMD) pathways in the repression of Coffea TEs. These same NMD mechanisms can also regulate plant host gene expression via the repression of genes that bear exonized TE sequences.


Novel approach identifies SNPs in SLC2A10 and KCNK9 with evidence for parent-of-origin effect on body mass index.

  • Clive J Hoggart‎ et al.
  • PLoS genetics‎
  • 2014‎

The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups. We applied the method to >56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead SNPs were carried forward for replication in five family-based studies (of ∼4,000 trios). Two SNPs replicated: the paternal rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10 gene) increased BMI equally (beta = 0.11 (SD), P<0.0027) compared to the respective maternal alleles. Real-time PCR experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on parental origin of the SNPs alleles (P<0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated individuals to identify POEs and demonstrates that they play an important role in adult obesity.


Mammalian-wide interspersed repeat (MIR)-derived enhancers and the regulation of human gene expression.

  • Daudi Jjingo‎ et al.
  • Mobile DNA‎
  • 2014‎

Mammalian-wide interspersed repeats (MIRs) are the most ancient family of transposable elements (TEs) in the human genome. The deep conservation of MIRs initially suggested the possibility that they had been exapted to play functional roles for their host genomes. MIRs also happen to be the only TEs whose presence in-and-around human genes is positively correlated to tissue-specific gene expression. Similar associations of enhancer prevalence within genes and tissue-specific expression, along with MIRs' previous implication as providing regulatory sequences, suggested a possible link between MIRs and enhancers.


On the presence and role of human gene-body DNA methylation.

  • Daudi Jjingo‎ et al.
  • Oncotarget‎
  • 2012‎

DNA methylation of promoter sequences is a repressive epigenetic mark that down-regulates gene expression. However, DNA methylation is more prevalent within gene-bodies than seen for promoters, and gene-body methylation has been observed to be positively correlated with gene expression levels. This paradox remains unexplained, and accordingly the role of DNA methylation in gene-bodies is poorly understood. We addressed the presence and role of human gene-body DNA methylation using a meta-analysis of human genome-wide methylation, expression and chromatin data sets. Methylation is associated with transcribed regions as genic sequences have higher levels of methylation than intergenic or promoter sequences. We also find that the relationship between gene-body DNA methylation and expression levels is non-monotonic and bell-shaped. Mid-level expressed genes have the highest levels of gene-body methylation, whereas the most lowly and highly expressed sets of genes both have low levels of methylation. While gene-body methylation can be seen to efficiently repress the initiation of intragenic transcription, the vast majority of methylated sites within genes are not associated with intragenic promoters. In fact, highly expressed genes initiate the most intragenic transcription inconsistent with the previously held notion that gene-body methylation serves to repress spurious intragenic transcription to allow for efficient transcriptional elongation. These observations lead us to propose a model to explain the presence of human gene-body methylation. This model holds that the repression of intragenic transcription by gene-body methylation is largely epiphenomenal, and suggests that gene-body methylation levels are predominantly shaped via the accessibility of the DNA to methylating enzyme complexes.


Multiple independent evolutionary solutions to core histone gene regulation.

  • Leonardo Mariño-Ramírez‎ et al.
  • Genome biology‎
  • 2006‎

Core histone genes are periodically expressed along the cell cycle and peak during S phase. Core histone gene expression is deeply evolutionarily conserved from the yeast Saccharomyces cerevisiae to human.


Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters.

  • Cristian V Crisan‎ et al.
  • Genome biology‎
  • 2019‎

Like many bacteria, Vibrio cholerae deploys a harpoon-like type VI secretion system (T6SS) to compete against other microbes in environmental and host settings. The T6SS punctures adjacent cells and delivers toxic effector proteins that are harmless to bacteria carrying cognate immunity factors. Only four effector/immunity pairs encoded on one large and three auxiliary gene clusters have been characterized from largely clonal, patient-derived strains of V. cholerae.


Implications of human evolution and admixture for mitochondrial replacement therapy.

  • Lavanya Rishishwar‎ et al.
  • BMC genomics‎
  • 2017‎

Mitochondrial replacement (MR) therapy is a new assisted reproductive technology that allows women with mitochondrial disorders to give birth to healthy children by combining their nuclei with mitochondria from unaffected egg donors. Evolutionary biologists have raised concerns about the safety of MR therapy based on the extent to which nuclear and mitochondrial genomes are observed to co-evolve within natural populations, i.e. the nuclear-mitochondrial mismatch hypothesis. In support of this hypothesis, a number of previous studies on model organisms have provided evidence for incompatibility between nuclear and mitochondrial genomes from divergent populations of the same species.


Opposing activities of oncogenic MIR17HG and tumor suppressive MIR100HG clusters and their gene targets regulate replicative senescence in human adult stem cells.

  • Mary F Lopez‎ et al.
  • NPJ aging and mechanisms of disease‎
  • 2017‎

Growing evidence suggests that many diseases of aging, including diseases associated with robust changes and adipose deports, may be caused by resident adult stem cell exhaustion due to the process called cellular senescence. Understanding how microRNA pathways can regulate cellular senescence is crucial for the development of novel diagnostic and therapeutic strategies to combat these pathologies. Herein, using integrated transcriptomic and semi-quantitative proteomic analysis, we provide a system level view of the regulation of human adipose-derived stem cell senescence by a subset of mature microRNAs (termed senescence-associated-microRNAs) produced by biogenesis of oncogenic MIR17HG and tumor-suppressive MIR100HG clusters. We demonstrate functional significance of these mature senescence-associated-microRNAs in the process of replicative senescence of human adipose-derived stem cells ex-vivo and define a set of senescence-associated-microRNA gene targets that are able to elicit, modulate and, most importantly, balance intimate connections between oncogenic and senescent events.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: