Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 161 papers

The causal relevance of body mass index in different histological types of lung cancer: A Mendelian randomization study.

  • Robert Carreras-Torres‎ et al.
  • Scientific reports‎
  • 2016‎

Body mass index (BMI) is inversely associated with lung cancer risk in observational studies, even though it increases the risk of several other cancers, which could indicate confounding by tobacco smoking or reverse causality. We used the two-sample Mendelian randomization (MR) approach to circumvent these limitations of observational epidemiology by constructing a genetic instrument for BMI, based on results from the GIANT consortium, which was evaluated in relation to lung cancer risk using GWAS results on 16,572 lung cancer cases and 21,480 controls. Results were stratified by histological subtype, smoking status and sex. An increase of one standard deviation (SD) in BMI (4.65 Kg/m(2)) raised the risk for lung cancer overall (OR = 1.13; P = 0.10). This was driven by associations with squamous cell (SQ) carcinoma (OR = 1.45; P = 1.2 × 10(-3)) and small cell (SC) carcinoma (OR = 1.81; P = 0.01). An inverse trend was seen for adenocarcinoma (AD) (OR = 0.82; P = 0.06). In stratified analyses, a 1 SD increase in BMI was inversely associated with overall lung cancer in never smokers (OR = 0.50; P = 0.02). These results indicate that higher BMI may increase the risk of certain types of lung cancer, in particular SQ and SC carcinoma.


Reference-free deconvolution of DNA methylation data and mediation by cell composition effects.

  • E Andres Houseman‎ et al.
  • BMC bioinformatics‎
  • 2016‎

Recent interest in reference-free deconvolution of DNA methylation data has led to several supervised methods, but these methods do not easily permit the interpretation of underlying cell types.


Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls.

  • Maria N Timofeeva‎ et al.
  • Human molecular genetics‎
  • 2012‎

Recent genome-wide association studies (GWASs) have identified common genetic variants at 5p15.33, 6p21-6p22 and 15q25.1 associated with lung cancer risk. Several other genetic regions including variants of CHEK2 (22q12), TP53BP1 (15q15) and RAD52 (12p13) have been demonstrated to influence lung cancer risk in candidate- or pathway-based analyses. To identify novel risk variants for lung cancer, we performed a meta-analysis of 16 GWASs, totaling 14 900 cases and 29 485 controls of European descent. Our data provided increased support for previously identified risk loci at 5p15 (P = 7.2 × 10(-16)), 6p21 (P = 2.3 × 10(-14)) and 15q25 (P = 2.2 × 10(-63)). Furthermore, we demonstrated histology-specific effects for 5p15, 6p21 and 12p13 loci but not for the 15q25 region. Subgroup analysis also identified a novel disease locus for squamous cell carcinoma at 9p21 (CDKN2A/p16(INK4A)/p14(ARF)/CDKN2B/p15(INK4B)/ANRIL; rs1333040, P = 3.0 × 10(-7)) which was replicated in a series of 5415 Han Chinese (P = 0.03; combined analysis, P = 2.3 × 10(-8)). This large analysis provides additional evidence for the role of inherited genetic susceptibility to lung cancer and insight into biological differences in the development of the different histological types of lung cancer.


Transcriptomic response of primary human airway epithelial cells to flavoring chemicals in electronic cigarettes.

  • Hae-Ryung Park‎ et al.
  • Scientific reports‎
  • 2019‎

The widespread use of electronic cigarettes (e-cigarettes or e-cig) is a growing public health concern. Diacetyl and its chemical cousin 2,3-pentanedione are commonly used to add flavors to e-cig; however, little is known about how the flavoring chemicals may impair lung function. Here we report that the flavoring chemicals induce transcriptomic changes and perturb cilia function in the airway epithelium. Using RNA-Seq, we identified a total of 163 and 568 differentially expressed genes in primary normal human bronchial epithelial (NHBE) cells that were exposed to diacetyl and 2,3-pentanedione, respectively. DAVID pathway analysis revealed an enrichment of cellular pathways involved in cytoskeletal and cilia processes among the set of common genes (142 genes) perturbed by both diacetyl and 2,3-pentanedione. Consistent with this, qRT-PCR confirmed that the expression of multiple genes involved in cilia biogenesis was significantly downregulated by diacetyl and 2,3-pentanedione in NHBE cells. Furthermore, immunofluorescence staining showed that the number of ciliated cells was significantly decreased by the flavoring chemicals. Our study indicates that the two widely used e-cig flavoring chemicals impair the cilia function in airway epithelium and likely contribute to the adverse effects of e-cig in the lung.


Genetic overlap of chronic obstructive pulmonary disease and cardiovascular disease-related traits: a large-scale genome-wide cross-trait analysis.

  • Zhaozhong Zhu‎ et al.
  • Respiratory research‎
  • 2019‎

A growing number of studies clearly demonstrate a substantial association between chronic obstructive pulmonary disease (COPD) and cardiovascular diseases (CVD), although little is known about the shared genetics that contribute to this association.


Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk.

  • Xuemei Ji‎ et al.
  • Nature communications‎
  • 2018‎

Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.


Pleiotropic associations of risk variants identified for other cancers with lung cancer risk: the PAGE and TRICL consortia.

  • S Lani Park‎ et al.
  • Journal of the National Cancer Institute‎
  • 2014‎

Genome-wide association studies have identified hundreds of genetic variants associated with specific cancers. A few of these risk regions have been associated with more than one cancer site; however, a systematic evaluation of the associations between risk variants for other cancers and lung cancer risk has yet to be performed.


Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients.

  • Leonel Armas-López‎ et al.
  • Oncotarget‎
  • 2017‎

Several homeobox-related gene (HOX) transcription factors such as mesenchyme HOX-2 (MEOX2) have previously been associated with cancer drug resistance, malignant progression and/or clinical prognostic responses in lung cancer patients; however, the mechanisms involved in these responses have yet to be elucidated. Here, an epigenomic strategy was implemented to identify novel MEOX2 gene promoter transcription targets and propose a new molecular mechanism underlying lung cancer drug resistance and poor clinical prognosis. Chromatin immunoprecipitation (ChIP) assays derived from non-small cell lung carcinomas (NSCLC) hybridized on gene promoter tiling arrays and bioinformatics analyses were performed, and quantitative, functional and clinical validation were also carried out. We statistically identified a common profile consisting of 78 gene promoter targets, including Hedgehog-GLI1 gene promoter sequences (FDR≤0.1 and FDR≤0.2). The GLI-1 gene promoter region from -2,192 to -109 was occupied by MEOX2, accompanied by transcriptionally active RNA Pol II and was epigenetically linked to the active histones H3K27Ac and H3K4me3; these associations were quantitatively validated. Moreover, siRNA genetic silencing assays identified a MEOX2-GLI1 axis involved in cellular cytotoxic resistance to cisplatinum in a dose-dependent manner, as well as cellular migration and proliferation. Finally, Kaplan-Maier survival analyses identified significant MEOX2-dependent GLI-1 protein expression associated with clinical progression and poorer overall survival using an independent cohort of NSCLC patients undergoing platinum-based oncological therapy with both epidermal growth factor receptor (EGFR)-non-mutated and EGFR-mutated status. In conclusion, this is the first study to investigate epigenome-wide MEOX2-transcription factor occupation identifying a novel overexpressed MEOX2-GLI1 axis and its clinical association with platinum-based cancer drug resistance and EGFR-tyrosine kinase inhibitor (TKI)-based therapy responses in NSCLC patients.


Identifying rare variants from exome scans: the GAW17 experience.

  • Saurabh Ghosh‎ et al.
  • BMC proceedings‎
  • 2011‎

Genetic Analysis Workshop 17 (GAW17) provided a platform for evaluating existing statistical genetic methods and for developing novel methods to analyze rare variants that modulate complex traits. In this article, we present an overview of the 1000 Genomes Project exome data and simulated phenotype data that were distributed to GAW17 participants for analyses, the different issues addressed by the participants, and the process of preparation of manuscripts resulting from the discussions during the workshop.


PI3K inhibition enhances doxorubicin-induced apoptosis in sarcoma cells.

  • Diana Marklein‎ et al.
  • PloS one‎
  • 2012‎

We searched for a drug capable of sensitization of sarcoma cells to doxorubicin (DOX). We report that the dual PI3K/mTOR inhibitor PI103 enhances the efficacy of DOX in several sarcoma cell lines and interacts with DOX in the induction of apoptosis. PI103 decreased the expression of MDR1 and MRP1, which resulted in DOX accumulation. However, the enhancement of DOX-induced apoptosis was unrelated to DOX accumulation. Neither did it involve inhibition of mTOR. Instead, the combination treatment of DOX plus PI103 activated Bax, the mitochondrial apoptosis pathway, and caspase 3. Caspase 3 activation was also observed in xenografts of sarcoma cells in nude mice upon combination of DOX with the specific PI3K inhibitor GDC-0941. Although the increase in apoptosis did not further impact on tumor growth when compared to the efficient growth inhibition by GDC-0941 alone, these findings suggest that inhibition of PI3K may improve DOX-induced proapoptotic effects in sarcoma. Taken together with similar recent studies of neuroblastoma- and glioblastoma-derived cells, PI3K inhibition seems to be a more general option to sensitize tumor cells to anthracyclines.


Design and analysis issues in gene and environment studies.

  • Chen-yu Liu‎ et al.
  • Environmental health : a global access science source‎
  • 2012‎

Both nurture (environmental) and nature (genetic factors) play an important role in human disease etiology. Traditionally, these effects have been thought of as independent. This perspective is ill informed for non-mendelian complex disorders which result as an interaction between genetics and environment. To understand health and disease we must study how nature and nurture interact. Recent advances in human genomics and high-throughput biotechnology make it possible to study large numbers of genetic markers and gene products simultaneously to explore their interactions with environment. The purpose of this review is to discuss design and analytic issues for gene-environment interaction studies in the "-omics" era, with a focus on environmental and genetic epidemiological studies. We present an expanded environmental genomic disease paradigm. We discuss several study design issues for gene-environmental interaction studies, including confounding and selection bias, measurement of exposures and genotypes. We discuss statistical issues in studying gene-environment interactions in different study designs, such as choices of statistical models, assumptions regarding biological factors, and power and sample size considerations, especially in genome-wide gene-environment studies. Future research directions are also discussed.


Controlled-rate freezer cryopreservation of highly concentrated peripheral blood mononuclear cells results in higher cell yields and superior autologous T-cell stimulation for dendritic cell-based immunotherapy.

  • Timo Buhl‎ et al.
  • Cancer immunology, immunotherapy : CII‎
  • 2012‎

Availability of large quantities of functionally effective dendritic cells (DC) represents one of the major challenges for immunotherapeutic trials against infectious or malignant diseases. Low numbers or insufficient T-cell activation of DC may result in premature termination of treatment and unsatisfying immune responses in clinical trials. Based on the notion that cryopreservation of monocytes is superior to cryopreservation of immature or mature DC in terms of resulting DC quantity and immuno-stimulatory capacity, we aimed to establish an optimized protocol for the cryopreservation of highly concentrated peripheral blood mononuclear cells (PBMC) for DC-based immunotherapy. Cryopreserved cell preparations were analyzed regarding quantitative recovery, viability, phenotype, and functional properties. In contrast to standard isopropyl alcohol (IPA) freezing, PBMC cryopreservation in an automated controlled-rate freezer (CRF) with subsequent thawing and differentiation resulted in significantly higher cell yields of immature and mature DC. Immature DC yields and total protein content after using CRF were comparable with results obtained with freshly prepared PBMC and exceeded results of standard IPA freezing by approximately 50 %. While differentiation markers, allogeneic T-cell stimulation, viability, and cytokine profiles were similar to DC from standard freezing procedures, DC generated from CRF-cryopreserved PBMC induced a significantly higher antigen-specific IFN-γ release from autologous effector T cells. In summary, automated controlled-rate freezing of highly concentrated PBMC represents an improved method for increasing DC yields and autologous T-cell stimulation.


Surrogate phenotype definition for alcohol use disorders: a genome-wide search for linkage and association.

  • Albert Rosenberger‎ et al.
  • BMC genetics‎
  • 2005‎

For the identification of susceptibility loci in complex diseases the choice of the target phenotype is very important. We compared results of genome-wide searches for linkage or for association related to three phenotypes for alcohol use disorder. These are a behavioral score BQ, based on a 12-item questionnaire about drinking behavior and the subject's report of drinking-related health problems, and ERP pattern and ERP magnitude, both derived from the eyes closed resting ERP measures to quantify brain activity. Overall, we were able to identify 11 candidate regions for linkage. Only two regions were found to be related to both BQ and one of the ERP phenotypes. The genome-wide search for association using single-nucleotide polymorphisms did not yield interesting leads.


Functional impact of endotoxin receptor CD14 polymorphisms on transcriptional activity.

  • Jasmin Mertens‎ et al.
  • Journal of molecular medicine (Berlin, Germany)‎
  • 2009‎

The polymorphism rs2569190 within the CD14 endotoxin (lipopolysaccharide, LPS) receptor gene is associated with various disease conditions that are assumed to rely on endotoxin sensitivity. In vitro experiments suggest that the T allele sensitizes the host for exogenous or endogenous LPS via an enhanced CD14 expression. To prove the impact of this single nucleotide polymorphism in its natural genomic context in vivo, two parameters of gene transcription were analyzed in peripheral blood mononuclear cells (PBMC) from single healthy individuals: (a) recruitment of RNA polymerase II by haplotype-specific chromatin immunoprecipitation and (b) the relative amount of transcripts by allele-specific transcript quantification (ASTQ). RNA polymerase II was found to be twice as much bound to the most prevalent haplotype, C-T-C-G, the only one carrying a T at the position rs2569190 of interest. ASTQ employing two independent read-out assays revealed, however, similar transcript numbers originating from C-T-C-G and non-C-T-C-G haplotypes. Total CD14 mRNA levels from freshly isolated PBMC, moreover, were neither related to donors' geno- nor haplogenotypes. Our data argue for a functional impact of the rs2569190 polymorphism in terms of a stronger transcription initiation on T allele gene variants even if preferential allele-specific binding does not result in an increase in transcript numbers. Endotoxin sensitivity associated with this genetic variation appears not to rely solely on a cis-acting regulatory impact of rs2569190 on CD14 gene transcription in PBMC.


Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh.

  • Xiaoxi Dong‎ et al.
  • PloS one‎
  • 2017‎

Arsenic has antimicrobial properties at high doses yet few studies have examined its effect on gut microbiota. This warrants investigation since arsenic exposure increases the risk of many diseases in which gut microbiota have been shown to play a role. We examined the association between arsenic exposure from drinking water and the composition of intestinal microbiota in children exposed to low and high arsenic levels during prenatal development and early life.


Associations between Diet and Toenail Arsenic Concentration among Pregnant Women in Bangladesh: A Prospective Study.

  • Pi-I D Lin‎ et al.
  • Nutrients‎
  • 2017‎

This prospective study evaluated the relationship between long-term dietary habits and total arsenic (As) concentration in toenail clippings in a cohort of 1616 pregnant women in the Bangladeshi administrative regions of Sirajdikhan and Pabna Sadar. Diet was assessed at Gestation Week 28 and at Postpartum Month 1, using a locally-validated dish-based semi-quantitative food-frequency questionnaire. Toenail As concentration was analyzed by microwave-assisted acid digestion and inductively coupled plasma mass spectrometry. Associations between natural log-transformed consumption of individual food items and temporally matched natural log-transformed toenail As concentration were quantified using general linear models that accounted for As concentration in the primary drinking water source and other potential confounders. The analysis was stratified by As in drinking water (≤50 μg/L versus >50 μg/L) and the time of dietary assessment (Gestation Week 28 versus Postpartum Week 1). Interestingly, toenail As was not significantly associated with consumption of plain rice as hypothesized. However, toenail As was positively associated with consumption of several vegetable, fish and meat items and was negatively associated with consumption of rice, cereal, fruits, and milk based food items. Further studies in pregnant women are needed to compare As metabolism at different levels of As exposure and the interaction between dietary composition and As absorption.


A Novel Genetic Variant in Long Non-coding RNA Gene NEXN-AS1 is Associated with Risk of Lung Cancer.

  • Hua Yuan‎ et al.
  • Scientific reports‎
  • 2016‎

Lung cancer etiology is multifactorial, and growing evidence has indicated that long non-coding RNAs (lncRNAs) are important players in lung carcinogenesis. We performed a large-scale meta-analysis of 690,564 SNPs in 15,531 autosomal lncRNAs by using datasets from six previously published genome-wide association studies (GWASs) from the Transdisciplinary Research in Cancer of the Lung (TRICL) consortium in populations of European ancestry. Previously unreported significant SNPs (P value < 1 × 10-7) were further validated in two additional independent lung cancer GWAS datasets from Harvard University and deCODE. In the final meta-analysis of all eight GWAS datasets with 17,153 cases and 239,337 controls, a novel risk SNP rs114020893 in the lncRNA NEXN-AS1 region at 1p31.1 remained statistically significant (odds ratio = 1.17; 95% confidence interval = 1.11-1.24; P = 8.31 × 10-9). In further in silico analysis, rs114020893 was predicted to change the secondary structure of the lncRNA. Our finding indicates that SNP rs114020893 of NEXN-AS1 at 1p31.1 may contribute to lung cancer susceptibility.


PubMed search filters for the study of putative outdoor air pollution determinants of disease.

  • Stefania Curti‎ et al.
  • BMJ open‎
  • 2016‎

Several PubMed search filters have been developed in contexts other than environmental. We aimed at identifying efficient PubMed search filters for the study of environmental determinants of diseases related to outdoor air pollution.


Impact of the MICA-129Met/Val Dimorphism on NKG2D-Mediated Biological Functions and Disease Risks.

  • Antje Isernhagen‎ et al.
  • Frontiers in immunology‎
  • 2016‎

The major histocompatibility complex (MHC) class I chain-related A (MICA) is the most polymorphic non-classical MHC class I gene in humans. It encodes a ligand for NKG2D (NK group 2, member D), an activating natural killer (NK) receptor that is expressed mainly on NK cells and CD8+ T cells. The single-nucleotide polymorphism (SNP) rs1051792 causing a valine (Val) to methionine (Met) exchange at position 129 of the MICA protein is of specific interest. It separates MICA into isoforms that bind NKG2D with high (Met) and low affinities (Val). Therefore, this SNP has been investigated for associations with infections, autoimmune diseases, and cancer. Here, we systematically review these studies and analyze them in view of new data on the functional consequences of this polymorphism. It has been shown recently that the MICA-129Met variant elicits a stronger NKG2D signaling, resulting in more degranulation and IFN-γ production in NK cells and in a faster costimulation of CD8+ T cells than the MICA-129Val variant. However, the MICA-129Met isoform also downregulates NKG2D more efficiently than the MICA-129Val isoform. This downregulation impairs NKG2D-mediated functions at high expression intensities of the MICA-Met variant. These features of the MICA-129Met/Val dimorphism need to be considered when interpreting disease association studies. Particularly, in the field of hematopoietic stem cell transplantation, they help to explain the associations of the SNP with outcome including graft-versus-host disease and relapse of malignancy. Implications for future disease association studies of the MICA-129Met/Val dimorphism are discussed.


Identification of genetic features associated with fine particulate matter (PM2.5) modulated DNA damage using improved random forest analysis.

  • Dongfang You‎ et al.
  • Gene‎
  • 2020‎

Recent studies have found multiple single nucleotide variants (SNVs) associated with DNA damage. However, previous association analysis may ignore the potential interaction effects between SNVs. Therefore, we used an improved random forest (RF) analysis to identify the SNVs related to personal DNA damage in exon-focused genome-wide association study (GWAS). A total of 301 subjects from three independent centers (Zhuhai, Wuhan, and Tianjin) were retained for analysis. An improved RF procedure was used to systematically screen key SNVs associated with DNA damage. Furthermore, we used genetic risk score (GRS) and mediation analysis to investigate the integrative effect and potential mechanism of these genetic variants on DNA damage. Besides, gene set enrichment analysis was conducted to identify the pathways enriched by key SNVs using the Data-driven Expression Prioritized Integration for Complex Traits (DEPICT). Finally, a set of 24 SNVs with the lowest mean square errors (MSE) were identified by improved RF analysis. Both weighted and unweighted GRSs were associated with increased DNA damage levels (Pweight < 0.001 and Punweight < 0.001). Gene set enrichment analysis indicated that these loci were significantly enriched in several biological features associated with DNA damage. These findings suggested the role of SNVs in modifying DNA damage levels. It may be convincing that this improved RF analysis can effectively identify SNVs associated with DNA damage levels.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: