Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

Viral Determinants of miR-122-Independent Hepatitis C Virus Replication.

  • Sharon E Hopcraft‎ et al.
  • mSphere‎
  • 2016‎

Hepatitis C virus (HCV) replication requires binding of the liver-specific microRNA (miRNA) miR-122 to two sites in the HCV 5' untranslated region (UTR). Although we and others have shown that viral genetics impact the amount of active miR-122 required for replication, it is unclear if HCV can replicate in the complete absence of this miRNA. To probe the absolute requirements for miR-122 and the genetic basis for those requirements, we used clustered regularly interspaced short palindromic repeat (CRISPR) technology to knock out miR-122 in Huh-7.5 cells and reconstituted these knockout (KO) cells with either wild-type miR-122 or a mutated version of this miRNA. We then characterized the replication of the wild-type virus, as well as a mutated HCV bearing 5' UTR substitutions to restore binding to the mutated miR-122, in miR-122 KO Huh-7.5 cells expressing no, wild-type, or mutated miR-122. We found that while replication was most efficient when wild-type or mutated HCV was provided with the matched miR-122, inefficient replication could be observed in cells expressing the mismatched miR-122 or no miR-122. We then selected viruses capable of replicating in cells expressing noncognate miR-122 RNAs. Unexpectedly, these viruses contained multiple mutations throughout their first 42 nucleotides that would not be predicted to enhance binding of the provided miR-122. These mutations increased HCV RNA replication in cells expressing either the mismatched miR-122 or no miR-122. These data provide new evidence that HCV replication can occur independently of miR-122 and provide unexpected insights into how HCV genetics influence miR-122 requirements. IMPORTANCE Hepatitis C virus (HCV) is the leading cause of liver cancer in the Western Hemisphere. HCV infection requires miR-122, which is expressed only in liver cells, and thus is one reason that replication of this virus occurs efficiently only in cells of hepatic origin. To understand how HCV genetics impact miR-122 usage, we knocked out miR-122 using clustered regularly interspaced short palindromic repeat (CRISPR) technology and adapted virus to replicate in the presence of noncognate miR-122 RNAs. In doing so, we identified viral mutations that allow replication in the complete absence of miR-122. This work provides new insights into how HCV genetics influence miR-122 requirements and proves that replication can occur without this miRNA, which has broad implications for how HCV tropism is maintained.


Cytokine response signatures in disease progression and development of severe clinical outcomes for leptospirosis.

  • Eliana A G Reis‎ et al.
  • PLoS neglected tropical diseases‎
  • 2013‎

The role of the immune response in influencing leptospirosis clinical outcomes is not yet well understood. We hypothesized that acute-phase serum cytokine responses may play a role in disease progression, risk for death, and severe pulmonary hemorrhage syndrome (SPHS).


Multiple network-constrained regressions expand insights into influenza vaccination responses.

  • Stefan Avey‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2017‎

Systems immunology leverages recent technological advancements that enable broad profiling of the immune system to better understand the response to infection and vaccination, as well as the dysregulation that occurs in disease. An increasingly common approach to gain insights from these large-scale profiling experiments involves the application of statistical learning methods to predict disease states or the immune response to perturbations. However, the goal of many systems studies is not to maximize accuracy, but rather to gain biological insights. The predictors identified using current approaches can be biologically uninterpretable or present only one of many equally predictive models, leading to a narrow understanding of the underlying biology.


Detection of SARS-CoV-2 RNA by multiplex RT-qPCR.

  • Eriko Kudo‎ et al.
  • PLoS biology‎
  • 2020‎

The current quantitative reverse transcription PCR (RT-qPCR) assay recommended for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing in the United States requires analysis of 3 genomic targets per sample: 2 viral and 1 host. To simplify testing and reduce the volume of required reagents, we devised a multiplex RT-qPCR assay to detect SARS-CoV-2 in a single reaction. We used existing N1, N2, and RP primer and probe sets by the Centers for Disease Control and Prevention, but substituted fluorophores to allow multiplexing of the assay. The cycle threshold (Ct) values of our multiplex RT-qPCR were comparable to those obtained by the single assay adapted for research purposes. Low copy numbers (≥500 copies/reaction) of SARS-CoV-2 RNA were consistently detected by the multiplex RT-qPCR. Our novel multiplex RT-qPCR improves upon current single diagnostics by saving reagents, costs, time, and labor.


Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling.

  • Benjamin Israelow‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2020‎

Severe Acute Respiratory Syndrome- Coronavirus 2 (SARS-Cov-2) has caused over 5,000,000 cases of Coronavirus disease (COVID-19) with significant fatality rate.1-3 Due to the urgency of this global pandemic, numerous therapeutic and vaccine trials have begun without customary safety and efficacy studies.4 Laboratory mice have been the stalwart of these types of studies; however, they do not support infection by SARS-CoV-2 due to the inability of its spike (S) protein to engage the mouse ortholog of its human entry receptor angiotensin-converting enzyme 2 (hACE2). While hACE2 transgenic mice support infection and pathogenesis,5 these mice are currently limited in availability and are restricted to a single genetic background. Here we report the development of a mouse model of SARS-CoV-2 based on adeno associated virus (AAV)-mediated expression of hACE2. These mice support viral replication and antibody production and exhibit pathologic findings found in COVID-19 patients as well as non-human primate models. Moreover, we show that type I interferons are unable to control SARS-CoV2 replication and drive pathologic responses. Thus, the hACE2-AAV mouse model enables rapid deployment for in-depth analysis following robust SARS-CoV-2 infection with authentic patient-derived virus in mice of diverse genetic backgrounds. This represents a much-needed platform for rapidly testing prophylactic and therapeutic strategies to combat COVID-19.


Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19.

  • Avraham Unterman‎ et al.
  • Nature communications‎
  • 2022‎

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Associations of SARS-CoV-2 serum IgG with occupation and demographics of military personnel.

  • Joseph Zell‎ et al.
  • PloS one‎
  • 2021‎

Countries across the globe have mobilized their armed forces in response to COVID-19, placing them at increased risk for viral exposure. Humoral responses to SARS-CoV-2 among military personnel serve as biomarkers of infection and provide a basis for disease surveillance and recognition of work-related risk factors.


Kynurenic acid may underlie sex-specific immune responses to COVID-19.

  • Yuping Cai‎ et al.
  • Science signaling‎
  • 2021‎

Coronavirus disease 2019 (COVID-19) has poorer clinical outcomes in males than in females, and immune responses underlie these sex-related differences. Because immune responses are, in part, regulated by metabolites, we examined the serum metabolomes of COVID-19 patients. In male patients, kynurenic acid (KA) and a high KA-to-kynurenine (K) ratio (KA:K) positively correlated with age and with inflammatory cytokines and chemokines and negatively correlated with T cell responses. Males that clinically deteriorated had a higher KA:K than those that stabilized. KA inhibits glutamate release, and glutamate abundance was lower in patients that clinically deteriorated and correlated with immune responses. Analysis of data from the Genotype-Tissue Expression (GTEx) project revealed that the expression of the gene encoding the enzyme that produces KA, kynurenine aminotransferase, correlated with cytokine abundance and activation of immune responses in older males. This study reveals that KA has a sex-specific link to immune responses and clinical outcomes in COVID-19, suggesting a positive feedback between metabolites and immune responses in males.


Transcriptomic analysis of human IL-7 receptor alpha low and high effector memory CD8+ T cells reveals an age-associated signature linked to influenza vaccine response in older adults.

  • Hong-Jai Park‎ et al.
  • Aging cell‎
  • 2019‎

Here, we investigated the relationship of the age-associated expansion of IL-7 receptor alpha low (IL-7Rαlow ) effector memory (EM) CD8+ T cells with the global transcriptomic profile of peripheral blood cells in humans. We found 231 aging signature genes of IL-7Rαlow EM CD8+ T cells that corresponded to 15% of the age-associated genes (231/1,497) reported by a meta-analysis study on human peripheral whole blood from approximately 15,000 individuals, having high correlation with chronological age. These aging signature genes were the target genes of several transcription factors including MYC, SATB1, and BATF, which also belonged to the 231 genes, supporting the upstream regulatory role of these transcription factors in altering the gene expression profile of peripheral blood cells with aging. We validated the differential expression of these transcription factors between IL-7Rαlow and high EM CD8+ T cells as well as in peripheral blood mononuclear cells (PBMCs) of young and older adults. Finally, we found a significant association with influenza vaccine responses in older adults, suggesting the possible biological significance of the aging signature genes of IL-7Rαlow EM CD8+ T cells. The results of our study support the relationship of the expansion of IL-7Rαlow EM CD8+ T cells with the age-associated changes in the gene expression profile of peripheral blood cells and its possible biological implications.


SARS-CoV-2 mRNA vaccines decouple anti-viral immunity from humoral autoimmunity.

  • Jillian R Jaycox‎ et al.
  • Nature communications‎
  • 2023‎

mRNA-based vaccines dramatically reduce the occurrence and severity of COVID-19, but are associated with rare vaccine-related adverse effects. These toxicities, coupled with observations that SARS-CoV-2 infection is associated with autoantibody development, raise questions whether COVID-19 vaccines may also promote the development of autoantibodies, particularly in autoimmune patients. Here we used Rapid Extracellular Antigen Profiling to characterize self- and viral-directed humoral responses after SARS-CoV-2 mRNA vaccination in 145 healthy individuals, 38 patients with autoimmune diseases, and 8 patients with mRNA vaccine-associated myocarditis. We confirm that most individuals generated robust virus-specific antibody responses post vaccination, but that the quality of this response is impaired in autoimmune patients on certain modes of immunosuppression. Autoantibody dynamics are remarkably stable in all vaccinated patients compared to COVID-19 patients that exhibit an increased prevalence of new autoantibody reactivities. Patients with vaccine-associated myocarditis do not have increased autoantibody reactivities relative to controls. In summary, our findings indicate that mRNA vaccines decouple SARS-CoV-2 immunity from autoantibody responses observed during acute COVID-19.


Nonsystematic Reporting Biases of the SARS-CoV-2 Variant Mu Could Impact Our Understanding of the Epidemiological Dynamics of Emerging Variants.

  • Mary E Petrone‎ et al.
  • Genome biology and evolution‎
  • 2023‎

Developing a timely and effective response to emerging SARS-CoV-2 variants of concern (VOCs) is of paramount public health importance. Global health surveillance does not rely on genomic data alone to identify concerning variants when they emerge. Instead, methods that utilize genomic data to estimate the epidemiological dynamics of emerging lineages have the potential to serve as an early warning system. However, these methods assume that genomic data are uniformly reported across circulating lineages. In this study, we analyze differences in reporting delays among SARS-CoV-2 VOCs as a plausible explanation for the timing of the global response to the former VOC Mu. Mu likely emerged in South America in mid-2020, where its circulation was largely confined. In this study, we demonstrate that Mu was designated as a VOC ∼1 year after it emerged and find that the reporting of genomic data for Mu differed significantly than that of other VOCs within countries, states, and individual laboratories. Our findings suggest that nonsystematic biases in the reporting of genomic data may have delayed the global response to Mu. Until they are resolved, the surveillance gaps that affected the global response to Mu could impede the rapid and accurate assessment of future emerging variants.


Dectin-1 stimulation promotes a distinct inflammatory signature in the setting of HIV-infection and aging.

  • Archit Kumar‎ et al.
  • Aging‎
  • 2023‎

Dectin-1 is an innate immune receptor that recognizes and binds β-1, 3/1, 6 glucans on fungi. We evaluated Dectin-1 function in myeloid cells in a cohort of HIV-positive and HIV-negative young and older adults. Stimulation of monocytes with β-D-glucans induced a pro-inflammatory phenotype in monocytes of HIV-infected individuals that was characterized by increased levels of IL-12, TNF-α, and IL-6, with some age-associated cytokine increases also noted. Dendritic cells showed a striking HIV-associated increase in IFN-α production. These increases in cytokine production paralleled increases in Dectin-1 surface expression in both monocytes and dendritic cells that were noted with both HIV and aging. Differential gene expression analysis showed that HIV-positive older adults had a distinct gene signature compared to other cohorts characterized by a robust TNF-α and coagulation response (increased at baseline), a persistent IFN-α and IFN-γ response, and an activated dendritic cell signature/M1 macrophage signature upon Dectin-1 stimulation. Dectin-1 stimulation induced a strong upregulation of MTORC1 signaling in all cohorts, although increased in the HIV-Older cohort (stimulation and baseline). Overall, our study demonstrates that the HIV Aging population has a distinct immune signature in response to Dectin-1 stimulation. This signature may contribute to the pro-inflammatory environment that is associated with HIV and aging.


Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants.

  • Miyu Moriyama‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) possess mutations that confer resistance to neutralizing antibodies within the Spike protein and are associated with breakthrough infection and reinfection. By contrast, less is known about the escape from CD8+ T cell-mediated immunity by VOC. Here, we demonstrated that all SARS-CoV-2 VOCs possess the ability to suppress major histocompatibility complex class I (MHC-I) expression. We identified several viral genes that contribute to the suppression of MHC I expression. Notably, MHC-I upregulation was strongly inhibited after SARS-CoV-2 but not influenza virus infection in vivo. While earlier VOCs possess similar capacity as the ancestral strain to suppress MHC-I, the Omicron subvariants exhibited a greater ability to suppress surface MHC-I expression. We identified a common mutation in the E protein of Omicron that further suppressed MHC-I expression. Collectively, our data suggest that in addition to escaping from neutralizing antibodies, the success of Omicron subvariants to cause breakthrough infection and reinfection may in part be due to its optimized evasion from T cell recognition.


Hepatitis C virus genetics affects miR-122 requirements and response to miR-122 inhibitors.

  • Benjamin Israelow‎ et al.
  • Nature communications‎
  • 2014‎

Hepatitis C virus (HCV) replication is dependent on a liver-specific microRNA (miRNA), miR-122. A recent clinical trial reported that transient inhibition of miR-122 reduced viral titres in HCV-infected patients. Here we set out to better understand how miR-122 inhibition influences HCV replication over time. Unexpectedly, we observed the emergence of an HCV variant that is resistant to miR-122 knockdown. Next-generation sequencing revealed that this was due to a single nucleotide change at position 28 (G28A) of the HCV genome, which falls between the two miR-122 seed-binding sites. Naturally occurring HCV isolates encoding G28A are similarly resistant to miR-122 inhibition, indicating that subtle differences in viral sequence, even outside the seed-binding site, greatly influence HCV's miR-122 concentration requirement. In addition, we found that HCV itself reduces miR-122's activity in the cell, possibly through binding and sequestering miR-122. Our study provides insight into the interaction between miR-122 and HCV, including viral adaptation to reduced miR-122 bioavailability, and has implications for the development of anti-miR-122-based HCV drugs.


Top3β is an RNA topoisomerase that works with fragile X syndrome protein to promote synapse formation.

  • Dongyi Xu‎ et al.
  • Nature neuroscience‎
  • 2013‎

Topoisomerases are crucial for solving DNA topological problems, but they have not been linked to RNA metabolism. Here we show that human topoisomerase 3β (Top3β) is an RNA topoisomerase that biochemically and genetically interacts with FMRP, a protein that is deficient in fragile X syndrome and is known to regulate the translation of mRNAs that are important for neuronal function, abnormalities of which are linked to autism. Notably, the FMRP-Top3β interaction is abolished by a disease-associated mutation of FMRP, suggesting that Top3β may contribute to the pathogenesis of mental disorders. Top3β binds multiple mRNAs encoded by genes with neuronal functions linked to schizophrenia and autism. Expression of one such gene, that encoding protein tyrosine kinase 2 (ptk2, also known as focal adhesion kinase or FAK), is reduced in the neuromuscular junctions of Top3β mutant flies. Synapse formation is defective in Top3β mutant flies and mice, as well as in FMRP mutant flies and mice. Our findings suggest that Top3β acts as an RNA topoisomerase and works with FMRP to promote the expression of mRNAs that are crucial for neurodevelopment and mental health.


IL-6 receptor α defines effector memory CD8+ T cells producing Th2 cytokines and expanding in asthma.

  • Naeun Lee‎ et al.
  • American journal of respiratory and critical care medicine‎
  • 2014‎

Cytokine receptors can be markers defining different T-cell subsets and considered as therapeutic targets. The association of IL-6 and IL-6 receptor α (IL-6Rα) with asthma was reported, suggesting their involvement in asthma.


Dissecting alterations in human CD8+ T cells with aging by high-dimensional single cell mass cytometry.

  • Min Sun Shin‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2019‎

We investigated the effect of aging on the multi-dimensional characteristics and heterogeneity of human peripheral CD8+ T cells defined by the expression of a set of molecules at the single cell level using the recently developed mass cytometry or Cytometry by Time-Of-Flight (CyTOF) and computational algorithms. CD8+ T cells of young and older adults had differential expression of molecules, especially those related to cell activation and migration, permitting the clustering of young and older adults through an unbiased approach. The changes in the expression of individual molecules were collectively reflected in the altered high-dimensional profiles of CD8+ T cells in older adults as visualized by the dimensionality reduction analysis tools principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). A combination of PhenoGraph clustering and t-SNE analysis revealed heterogeneous subsets of CD8+ T cells that altered with aging. Furthermore, intermolecular quantitative relationships in CD8+ T cells appeared to change with age as determined by the computational algorithm conditional-Density Resampled Estimate of Mutual Information (DREMI). The results of our study showed that heterogeneity, multidimensional characteristics, and intermolecular quantitative relationships in human CD8+ T cells altered with age, distinctively clustering young and older adults through an unbiased approach.


Sex differences in immune responses that underlie COVID-19 disease outcomes.

  • Takehiro Takahashi‎ et al.
  • Nature‎
  • 2020‎

There is increasing evidence that coronavirus disease 2019 (COVID-19) produces more severe symptoms and higher mortality among men than among women1-5. However, whether immune responses against severe acute respiratory syndrome coronavirus (SARS-CoV-2) differ between sexes, and whether such differences correlate with the sex difference in the disease course of COVID-19, is currently unknown. Here we examined sex differences in viral loads, SARS-CoV-2-specific antibody titres, plasma cytokines and blood-cell phenotyping in patients with moderate COVID-19 who had not received immunomodulatory medications. Male patients had higher plasma levels of innate immune cytokines such as IL-8 and IL-18 along with more robust induction of non-classical monocytes. By contrast, female patients had more robust T cell activation than male patients during SARS-CoV-2 infection. Notably, we found that a poor T cell response negatively correlated with patients' age and was associated with worse disease outcome in male patients, but not in female patients. By contrast, higher levels of innate immune cytokines were associated with worse disease progression in female patients, but not in male patients. These findings provide a possible explanation for the observed sex biases in COVID-19, and provide an important basis for the development of a sex-based approach to the treatment and care of male and female patients with COVID-19.


Rapid, reliable, and reproducible cell fusion assay to quantify SARS-Cov-2 spike interaction with hACE2.

  • Min Zhao‎ et al.
  • PLoS pathogens‎
  • 2021‎

COVID-19 is a global crisis of unimagined dimensions. Currently, Remedesivir is only fully licensed FDA therapeutic. A major target of the vaccine effort is the SARS-CoV-2 spike-hACE2 interaction, and assessment of efficacy relies on time consuming neutralization assay. Here, we developed a cell fusion assay based upon spike-hACE2 interaction. The system was tested by transient co-transfection of 293T cells, which demonstrated good correlation with standard spike pseudotyping for inhibition by sera and biologics. Then established stable cell lines were very well behaved and gave even better correlation with pseudotyping results, after a short, overnight co-incubation. Results with the stable cell fusion assay also correlated well with those of a live virus assay. In summary we have established a rapid, reliable, and reproducible cell fusion assay that will serve to complement the other neutralization assays currently in use, is easy to implement in most laboratories, and may serve as the basis for high throughput screens to identify inhibitors of SARS-CoV-2 virus-cell binding and entry.


High-throughput single-cell profiling of B cell responses following inactivated influenza vaccination in young and older adults.

  • Meng Wang‎ et al.
  • Aging‎
  • 2023‎

Seasonal influenza contributes to a substantial disease burden, resulting in approximately 10 million hospital visits and 50 thousand deaths in a typical year in the United States. 70 - 85% of the mortality occurs in people over the age of 65. Influenza vaccination is the best protection against the virus, but it is less effective for the elderly, which may be in part due to differences in the quantity or type of B cells induced by vaccination. To investigate this possibility, we sorted pre- and post-vaccination peripheral blood B cells from three young and three older adults with strong antibody responses to the inactivated influenza vaccine and employed single-cell technology to simultaneously profile the gene expression and the B cell receptor (BCR) of the B cells. Prior to vaccination, we observed a higher somatic hypermutation frequency and a higher abundance of activated B cells in older adults than in young adults. Following vaccination, young adults mounted a more clonal response than older adults. The expanded clones included a mix of plasmablasts, activated B cells, and resting memory B cells in both age groups, with a decreased proportion of plasmablasts in older adults. Differential abundance analysis identified additional vaccine-responsive cells that were not part of expanded clones, especially in older adults. We observed broadly consistent gene expression changes in vaccine-responsive plasmablasts and greater heterogeneity among activated B cells between age groups. These quantitative and qualitative differences in the B cells provide insights into age-related changes in influenza vaccination response.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: