Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

The neuronal transporter gene SLC6A15 confers risk to major depression.

  • Martin A Kohli‎ et al.
  • Neuron‎
  • 2011‎

Major depression (MD) is one of the most prevalent psychiatric disorders and a leading cause of loss in work productivity. A combination of genetic and environmental risk factors probably contributes to MD. We present data from a genome-wide association study revealing a neuron-specific neutral amino acid transporter (SLC6A15) as a susceptibility gene for MD. Risk allele carrier status in humans and chronic stress in mice were associated with a downregulation of the expression of this gene in the hippocampus, a brain region implicated in the pathophysiology of MD. The same polymorphisms also showed associations with alterations in hippocampal volume and neuronal integrity. Thus, decreased SLC6A15 expression, due to genetic or environmental factors, might alter neuronal circuits related to the susceptibility for MD. Our convergent data from human genetics, expression studies, brain imaging, and animal models suggest a pathophysiological mechanism for MD that may be accessible to drug targeting.


h channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy.

  • Béatrice Marcelin‎ et al.
  • Neurobiology of disease‎
  • 2009‎

I(h) tunes hippocampal CA1 pyramidal cell dendrites to optimally respond to theta inputs (4-12 Hz), and provides a negative time delay to theta inputs. Decreased I(h) activity, as seen in experimental temporal lobe epilepsy (TLE), could significantly alter the response of dendrites to theta inputs. Here we report a progressive erosion of theta resonance and phase lead in pyramidal cell dendrites during epileptogenesis in a rat model of TLE. These alterations were due to decreased I(h) availability, via a decline in HCN1/HCN2 subunit expression resulting in decreased h currents, and altered kinetics of the residual channels. This acquired HCN channelopathy thus compromises temporal coding and tuning to theta inputs in pyramidal cell dendrites. Decreased theta resonance in vitro also correlated with a reduction in theta frequency and power in vivo. We suggest that the neuronal/circuitry changes associated with TLE, including altered I(h)-dependent inductive mechanisms, can disrupt hippocampal theta function.


DNA methylation-based classification of central nervous system tumours.

  • David Capper‎ et al.
  • Nature‎
  • 2018‎

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


Guideline Adherence in Antibiotic Prescribing to Patients with Respiratory Diseases in Primary Care: Prevalence and Practice Variation.

  • Karin Hek‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2020‎

Respiratory tract infections (RTIs) account for a large part of antibiotic prescriptions in primary care. However, guidelines advise restrictive antibiotic prescribing for RTIs. Only in certain circumstances, depending on, e.g., comorbidity, are antibiotics indicated. Most studies on guideline adherence do not account for this. We aimed to assess guideline adherence for antibiotic prescribing for RTIs as well as its variation between general practices (GPs), accounting for patient characteristics. We used data from electronic health records of GPs in the Netherlands. We selected patients who consulted their GP for acute cough, rhinitis, rhinosinusitis or sore throat in 2014. For each disease episode we assessed whether, according to the GP guideline, there was an indication for antibiotics, using the patient's sociodemographic characteristics, comorbidity and co-medication. We assessed antibiotic prescribing for episodes with no or an unsure indication according to the guidelines. We analysed 248,896 episodes. Diagnoses with high rates of antibiotic prescribing when there was no indication include acute tonsillitis (57%), strep throat (56%), acute bronchitis (51%) and acute sinusitis (48%). Prescribing rates vary greatly between diagnoses and practices. Reduction of inappropriate antibiotic prescribing remains a key target to tackle antimicrobial resistance. Insight into reasons for guideline non-adherence may guide successful implementation of the variety of interventions already available for GPs and patients.


Age-, tumor-, and metastatic tissue-associated DNA hypermethylation of a T-box brain 1 locus in human kidney tissue.

  • Jürgen Serth‎ et al.
  • Clinical epigenetics‎
  • 2020‎

While a considerable number of tumor-specific hypermethylated loci have been identified in renal cell cancer (RCC), DNA methylation of loci showing successive increases in normal, tumoral, and metastatic tissues could point to genes with high relevance both for the process of tumor development and progression. Here, we report that DNA methylation of a locus in a genomic region corresponding to the 3'UTR of the transcription factor T-box brain 1 (TBR1) mRNA accumulates in normal renal tissues with age and possibly increased body mass index. Moreover, a further tissue-specific increase of methylation was observed for tumor and metastatic tissue samples.


Neuropathic pain in experimental autoimmune neuritis is associated with altered electrophysiological properties of nociceptive DRG neurons.

  • Omneya Taha‎ et al.
  • Experimental neurology‎
  • 2017‎

Guillain-Barré syndrome (GBS) is an acute, immune-mediated polyradiculoneuropathy characterized by rapidly progressive paresis and sensory disturbances. Moderate to severe and often intractable neuropathic pain is a common symptom of GBS, but its underlying mechanisms are unknown. Pathology of GBS is classically attributed to demyelination of large, myelinated peripheral fibers. However, there is increasing evidence that neuropathic pain in GBS is associated with impaired function of small, unmyelinated, nociceptive fibers. We therefore examined the functional properties of small DRG neurons, the somata of nociceptive fibers, in a rat model of GBS (experimental autoimmune neuritis=EAN). EAN rats developed behavioral signs of neuropathic pain. This was accompanied by a significant shortening of action potentials due to a more rapid repolarization and an increase in repetitive firing in a subgroup of capsaicin-responsive DRG neurons. Na+ current measurements revealed a significant increase of the fast TTX-sensitive current and a reduction of the persistent TTX-sensitive current component. These changes of Na+ currents may account for the significant decrease in AP duration leading to an overall increase in excitability and are therefore possibly directly linked to pathological pain behavior. Thus, like in other animal models of neuropathic and inflammatory pain, Na+ channels seem to be crucially involved in the pathology of GBS and may constitute promising targets for pain modulating pharmaceuticals.


MOG-Specific T Cells Lead to Spontaneous EAE with Multilocular B Cell Infiltration in the GF-IL23 Model.

  • Louisa Nitsch‎ et al.
  • Neuromolecular medicine‎
  • 2022‎

Although IL-23 and downstream signal transduction play essential roles in neuroinflammation, the local impact of IL-23 in multiple sclerosis is still not fully understood. Our previous study revealed that the central nervous system (CNS)-restricted expression of IL-23 in a mouse model with astrocyte-specific expression of IL-23, called GF-IL23 mice, leads to spontaneous formation of infiltrates in the brain, especially in the cerebellum. To further investigate the impact of CNS-specific IL-23-expression on neuroinflammation, we studied the GF-IL23 model in mice expressing a myelin oligodendrocyte glycoprotein (MOG)-specific T cell receptor (GF23-2D2 mice). The GF23-2D2 mice developed a chronic progressive experimental autoimmune encephalomyelitis with myelitis and ataxia without requiring additional immunization. CNS-production of IL-23 alone induced pronounced neuroinflammation in the transgenic MOG-specific T cell receptor model. The GF23-2D2 mice spontaneously developed multilocular infiltrates with a high number of B cells, demyelination and a proinflammatory cytokine milieu indicating that the interaction of encephalitogenic T cells and B cells via co-stimulatory factors seemed to be crucial.


Temporal lobe epilepsy surgery: Piriform cortex resection impacts seizure control in the long-term.

  • Valeri Borger‎ et al.
  • Annals of clinical and translational neurology‎
  • 2022‎

Recently, we showed that resection of at least 27% of the temporal part of piriform cortex (PiC) strongly correlated with seizure freedom 1 year following selective amygdalo-hippocampectomy (tsSAHE) in patients with mesial temporal lobe epilepsy (mTLE). However, the impact of PiC resection on long-term seizure outcome following tsSAHE is currently unknown. The aim of this study was to evaluate the impact of PiC resection on long-term seizure outcome in patients with mTLE treated with tsSAHE.


Gender and age concordance between patient and GP: an observational study on associations with referral behaviour.

  • Dorus Eggermont‎ et al.
  • BJGP open‎
  • 2022‎

Appropriate referral from primary to secondary care is essential for maintaining a healthcare system that is accessible and cost-effective. Social concordance can affect the doctor-patient interaction and possibly also referral behaviour.


An open presurgery MRI dataset of people with epilepsy and focal cortical dysplasia type II.

  • Fabiane Schuch‎ et al.
  • Scientific data‎
  • 2023‎

Automated detection of lesions using artificial intelligence creates new standards in medical imaging. For people with epilepsy, automated detection of focal cortical dysplasias (FCDs) is widely used because subtle FCDs often escape conventional neuroradiological diagnosis. Accurate recognition of FCDs, however, is of outstanding importance for affected people, as surgical resection of the dysplastic cortex is associated with a high chance of postsurgical seizure freedom. Here, we make publicly available a dataset of 85 people affected by epilepsy due to FCD type II and 85 healthy control persons. We publish 3D-T1 and 3D-FLAIR, manually labeled regions of interest, and carefully selected clinical features. The open presurgery MRI dataset may be used to validate existing automated algorithms of FCD detection as well as to create new approaches. Most importantly, it will enable comparability of already existing approaches and support a more widespread use of automated lesion detection tools.


Integrated systems-genetic analyses reveal a network target for delaying glioma progression.

  • Liisi Laaniste‎ et al.
  • Annals of clinical and translational neurology‎
  • 2019‎

To identify a convergent, multitarget proliferation characteristic for astrocytoma transformation that could be targeted for therapy discovery.


Partial sciatic nerve ligation leads to an upregulation of Ni2+-resistant T-type Ca2+ currents in capsaicin-responsive nociceptive dorsal root ganglion neurons.

  • Monika Jeub‎ et al.
  • Journal of pain research‎
  • 2019‎

Neuropathic pain resulting from peripheral nerve lesions is a common medical condition, but current analgesics are often insufficient. The identification of key molecules involved in pathological pain processing is a prerequisite for the development of new analgesic drugs. Hyperexcitability of nociceptive DRG-neurons due to regulation of voltage-gated ion-channels is generally assumed to contribute strongly to neuropathic pain. There is increasing evidence, that T-type Ca2+-currents and in particular the Cav3.2 T-type-channel isoform play an important role in neuropathic pain, but experimental results are contradicting.


Analyses of the spatiotemporal expression and subcellular localization of liprin-α proteins.

  • Magdalena Zürner‎ et al.
  • The Journal of comparative neurology‎
  • 2011‎

The members of the Liprin-α protein family, Liprin-α1-4, are scaffolding proteins that play important roles in the regulation of synapse assembly and maturation, vesicular trafficking, and cell motility. Recent evidence suggests that despite their high degree of homology, the four isoforms can be differentially regulated and fulfill diverging functions. However, to date their precise regional and subcellular distribution has remained elusive. Here, we examine the spatiotemporal expression patterns of Liprins-α in the rodent by using in situ hybridization, immunoblotting, and immunochemistry of primary cells as well as brain and retina sections. We show that Liprin-α1-4 mRNA and protein are widely expressed throughout the developing and adult central nervous system, with Liprin-α2 and -α3 being the major Liprin-α isoforms in the brain. Our data show that the four Liprin-α proteins differ in their regional distribution, in particular in the hippocampus, the cerebellum, and the olfactory bulb. Liprin-α1 exhibits a unique spatiotemporal expression pattern as its levels decrease during synaptogenesis, and it is the only Liprin-α with substantial non-neuronal expression. Immunocytochemistry of cultured primary neurons with pre- and postsynaptic marker proteins shows all four Liprins-α to be present at synapses and nonsynaptic sites to varying degrees. Together, these results show that neurons in different brain regions express a distinct complement of Liprin-α proteins.


CD8(+) T-cell pathogenicity in Rasmussen encephalitis elucidated by large-scale T-cell receptor sequencing.

  • Tilman Schneider-Hohendorf‎ et al.
  • Nature communications‎
  • 2016‎

Rasmussen encephalitis (RE) is a rare paediatric epilepsy with uni-hemispheric inflammation and progressive neurological deficits. To elucidate RE immunopathology, we applied T-cell receptor (TCR) sequencing to blood (n=23), cerebrospinal fluid (n=2) and brain biopsies (n=5) of RE patients, and paediatric controls. RE patients present with peripheral CD8(+) T-cell expansion and its strength correlates with disease severity. In addition, RE is the only paediatric epilepsy with prominent T-cell expansions in the CNS. Consistently, common clones are shared between RE patients, who also share MHC-I alleles. Public RE clones share Vβ genes and length of the CDR3. Rituximab/natalizumab/basiliximab treatment does not change TCR diversity, stem cell transplantation replaces the TCR repertoire with minimal overlap between donor and recipient, as observed in individual cases. Our study supports the hypothesis of an antigen-specific attack of peripherally expanded CD8(+) lymphocytes against CNS structures in RE, which might be ameliorated by restricting access to the CNS.


Common data elements and data management: Remedy to cure underpowered preclinical studies.

  • Niina Lapinlampi‎ et al.
  • Epilepsy research‎
  • 2017‎

Lack of translation of data obtained in preclinical trials to clinic has kindled researchers to develop new methodologies to increase the power and reproducibility of preclinical studies. One approach relates to harmonization of data collection and analysis, and has been used for a long time in clinical studies testing anti-seizure drugs. EPITARGET is a European Union FP7-funded research consortium composed of 18 partners from 9 countries. Its main research objective is to identify biomarkers and develop treatments for epileptogenesis. As the first step of harmonization of procedures between laboratories, EPITARGET established working groups for designing project-tailored common data elements (CDEs) and case report forms (CRFs) to be used in data collection and analysis. Eight major modules of CRFs were developed, presenting >1000 data points for each animal. EPITARGET presents the first single-project effort for harmonization of preclinical data collection and analysis in epilepsy research. EPITARGET is also anticipating the future challenges and requirements in a larger-scale preclinical harmonization of epilepsy studies, including training, data management expertise, cost, location, data safety and continuity of data repositories during and after funding period, and incentives motivating for the use of CDEs.


Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction.

  • Itai Weissberg‎ et al.
  • Neurobiology of disease‎
  • 2015‎

Post-injury epilepsy (PIE) is a common complication following brain insults, including ischemic, and traumatic brain injuries. At present, there are no means to identify the patients at risk to develop PIE or to prevent its development. Seizures can occur months or years after the insult, do not respond to anti-seizure medications in over third of the patients, and are often associated with significant neuropsychiatric morbidities. We have previously established the critical role of blood-brain barrier dysfunction in PIE, demonstrating that exposure of brain tissue to extravasated serum albumin induces activation of inflammatory transforming growth factor beta (TGF-β) signaling in astrocytes and eventually seizures. However, the link between the acute astrocytic inflammatory responses and reorganization of neural networks that underlie recurrent spontaneous seizures remains unknown. Here we demonstrate in vitro and in vivo that activation of the astrocytic ALK5/TGF-β-pathway induces excitatory, but not inhibitory, synaptogenesis that precedes the appearance of seizures. Moreover, we show that treatment with SJN2511, a specific ALK5/TGF-β inhibitor, prevents synaptogenesis and epilepsy. Our findings point to astrocyte-mediated synaptogenesis as a key epileptogenic process and highlight the manipulation of the TGF-β-pathway as a potential strategy for the prevention of PIE.


Systematic analysis of gene expression in human brains before and after death.

  • Henriette Franz‎ et al.
  • Genome biology‎
  • 2005‎

Numerous studies have employed microarray techniques to study changes in gene expression in connection with human disease, aging and evolution. The vast majority of human samples available for research are obtained from deceased individuals. This raises questions about how well gene expression patterns in such samples reflect those of living individuals.


Tumors diagnosed as cerebellar glioblastoma comprise distinct molecular entities.

  • Annekathrin Reinhardt‎ et al.
  • Acta neuropathologica communications‎
  • 2019‎

In this multi-institutional study we compiled a retrospective cohort of 86 posterior fossa tumors having received the diagnosis of cerebellar glioblastoma (cGBM). All tumors were reviewed histologically and subjected to array-based methylation analysis followed by algorithm-based classification into distinct methylation classes (MCs). The single MC containing the largest proportion of 25 tumors diagnosed as cGBM was MC anaplastic astrocytoma with piloid features representing a recently-described molecular tumor entity not yet included in the WHO Classification of Tumours of the Central Nervous System (WHO classification). Twenty-nine tumors molecularly corresponded to either of 6 methylation subclasses subsumed in the MC family GBM IDH wildtype. Further we identified 6 tumors belonging to the MC diffuse midline glioma H3 K27 M mutant and 6 tumors allotted to the MC IDH mutant glioma subclass astrocytoma. Two tumors were classified as MC pilocytic astrocytoma of the posterior fossa, one as MC CNS high grade neuroepithelial tumor with BCOR alteration and one as MC control tissue, inflammatory tumor microenvironment. The methylation profiles of 16 tumors could not clearly be assigned to one distinct MC. In comparison to supratentorial localization, the MC GBM IDH wildtype subclass midline was overrepresented, whereas the MCs GBM IDH wildtype subclass mesenchymal and subclass RTK II were underrepresented in the cerebellum. Based on the integration of molecular and histological findings all tumors received an integrated diagnosis in line with the WHO classification 2016. In conclusion, cGBM does not represent a molecularly uniform tumor entity, but rather comprises different brain tumor entities with diverse prognosis and therapeutic options. Distinction of these molecular tumor classes requires molecular analysis. More than 30% of tumors diagnosed as cGBM belong to the recently described molecular entity of anaplastic astrocytoma with piloid features.


Specific B- and T-cell populations are associated with cognition in patients with epilepsy and antibody positive and negative suspected limbic encephalitis.

  • Christoph Helmstaedter‎ et al.
  • Journal of neurology‎
  • 2021‎

Neuropsychological impairments are major symptoms of autoimmune limbic encephalitis (LE) epilepsy patients. In LE epilepsy patients with an autoimmune response against intracellular antigens as well as in antibody-negative patients, the antibody findings and magnetic resonance imaging pathology correspond poorly to the clinical features. Here, we evaluated whether T- and B-cells are linked to cognitive impairment in these groups.


Elevated baseline C-reactive protein levels predict poor progression-free survival in sporadic vestibular schwannoma.

  • Johannes Wach‎ et al.
  • Journal of neuro-oncology‎
  • 2022‎

Recent investigations showed emerging evidence of the role of inflammation in the growth of sporadic vestibular schwannoma (VS). The present retrospective study investigated the impact of systemic inflammation on tumor progression using serum C-reactive protein (CRP) levels in a series of 87 surgically treated sporadic VS patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: