Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

Cdc6 cooperates with c-Myc to promote genome instability and epithelial to mesenchymal transition EMT in zebrafish.

  • Ching-Hung Chen‎ et al.
  • Oncotarget‎
  • 2014‎

Aberration in DNA replication is a major cause to genome instability that is a hallmark of cancer cells. Cell division cycle 6 (Cdc6) and c-Myc have a critical role in the initiation of DNA replication. However, whether their interaction induces epithelial-mesenchymal transition (EMT) and promotes tumorigenesis in in vivo animal model remains unclear. Since using zebrafish as a cancer model has been restricted by the late onset of tumorigenesis and extreme difficulty in transformation on skin, we tried to establish a novel non-melanoma skin model in zebrafish to study their role in tumorigenesis. A stable transgenic zebrafish was created by using tol2 transposon, in which cdc6 and c-myc were co-overexpressed in epidermis driven by a skin-specific krt4 promoter. Intriguingly, co-overexpression of cdc6 and c-myc in transgenic zebrafish skin triggered tumor-like transformation, apoptosis attenuation, genomic instability, and EMT, hallmarks of malignant tumorigenesis. Our findings and other characteristics of zebrafish, including optical clarity and small molecule treatment, provide the future utility of this model for easy and non-invasive detection and for identification of new anti-cancer drug.


Effects of Tai Chi Exercise on Reducing Falls and Improving Balance Performance in Parkinson's Disease: A Meta-Analysis.

  • Hsin-Hsuan Liu‎ et al.
  • Parkinson's disease‎
  • 2019‎

Parkinson's disease (PD) is a common neurodegenerative disorder that may increase the risk of falls, functional limitation, and balance deficits. Tai Chi was used as an option for improving balance in people with PD. The aim of this meta-analysis was to evaluate the effects of Tai Chi on falls, balance, and functional mobility in individuals with PD.


Establishment of an Immunocompetent Metastasis Rat Model with Hepatocyte Cancer Stem Cells.

  • Semon Wu‎ et al.
  • Cancers‎
  • 2020‎

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality. Cancer stem cells (CSCs) are responsible for the maintenance, metastasis, and relapse of various tumors. The effects of CSCs on the tumorigenesis of HCC are still not fully understood, however. We have recently established two new rat HCC cell lines HTC and TW-1, which we isolated from diethylnitrosamine-induced rat liver cancer. Results showed that TW-1 expressed the genetic markers of CSCs, including CD133, GSTP1, CD44, CD90, and EpCAM. Moreover, TW-1 showed higher tolerance to sorafenib than HTC did. In addition, tumorigenesis and metastasis were observed in nude mice and wild-type rats with TW-1 xenografts. Finally, we combined highly expressed genes in TW-1/HTC with well-known biomarkers from recent HCC studies to predict HCC-related biomarkers and able to identify HCC with AUCs > 0.9 after machine learning. These results indicated that TW-1 was a novel rat CSC line, and the mice or rat models we established with TW-1 has great potential on HCC studies in the future.


Predicting Cognitive Decline in Parkinson's Disease with Mild Cognitive Impairment: A One-Year Observational Study.

  • Pei-Hao Chen‎ et al.
  • Parkinson's disease‎
  • 2020‎

We conducted an observational study to investigate clinical predictors of cognitive decline in patients with mild cognitive impairment (MCI), with a focus on patients with Parkinson's disease (PD) and Alzheimer's disease (AD). The study was performed with detailed neuropsychological testing, a portable device for gait analysis, and a comprehensive geriatric assessment for patients with MCI. Cognitive decline was defined as subjective cognitive impairment with an objective decline in the Mini-Mental State Examination (MMSE) ≥2 points at the one-year follow-up. Participants (n = 74) had a median age of 70 (interquartile range 60-79) years, and 45.9% of them were women. At the end of the study, 17.6% of the patients with MCI had a cognitive decline. Although no differences were observed between groups at the baseline cognitive study, patients with PD-MCI demonstrated more cognitive decline than patients with AD-MCI (28.6% vs. 7.7% p = 0.03). Patients with PD-MCI had more physical disabilities, including scores of instrumental activities of daily living (IADL), Tinetti balance, and gait scores, and some Timed Up and Go components. Initial Clinical Dementia Rating-Sum of Boxes score was a better predictor of future cognitive decline than MMSE in PD-MCI. For predicting the occurrence of cognitive decline in PD-MCI, the prediction accuracy increased from the reduced model (AUC = 0.822, p < 0.001) to the full model (a total of five independent variables, AUC = 0.974, p < 0.001). Given the potentially modifiable predictor, our findings also highlight the importance of identifying sleep quality and the ability to perform IADL.


Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis.

  • Cheng-Liang Kuo‎ et al.
  • Cancer letters‎
  • 2020‎

Mitochondrial Lon is a chaperone protein whose upregulation increases the production of mitochondrial reactive oxygen species (ROS). However, there is a lack of information in detail on how mitochondrial Lon regulates cancer metastasis through ROS production in the tumor microenvironment (TME). Our results show that elevated Lon promotes epithelial-mesenchymal transition (EMT) via ROS-dependent p38 and NF-κB-signaling. We further identified pyrroline-5-carboxylate reductase 1 (PYCR1) as a client of chaperone Lon, which induces mitochondrial ROS and EMT by Lon. Mitochondrial Lon induces ROS-dependent production of inflammatory cytokines, such as TGF-β, IL-6, IL-13, and VEGF-A, which consequently activates EMT, angiogenesis, and M2 macrophage polarization. In addition, Lon expression is induced upon the activation and M2 polarization of macrophages, which further promotes M2 macrophages to enhance the immunosuppressive microenvironment and metastatic behaviors in the TME. This raises the possibility that manipulation of the mitochondrial redox balance in the TME may serve as a therapeutic strategy to improve T cell function in cancer immunotherapy.


Lon upregulation contributes to cisplatin resistance by triggering NCLX-mediated mitochondrial Ca2+ release in cancer cells.

  • Vidhya Tangeda‎ et al.
  • Cell death & disease‎
  • 2022‎

Mitochondria are the major organelles in sensing cellular stress and inducing the response for cell survival. Mitochondrial Lon has been identified as an important stress protein involved in regulating proliferation, metastasis, and apoptosis in cancer cells. However, the mechanism of retrograde signaling by Lon on mitochondrial DNA (mtDNA) damage remains to be elucidated. Here we report the role of Lon in the response to cisplatin-induced mtDNA damage and oxidative stress, which confers cancer cells on cisplatin resistance via modulating calcium levels in mitochondria and cytosol. First, we found that cisplatin treatment on oral cancer cells caused oxidative damage of mtDNA and induced Lon expression. Lon overexpression in cancer cells decreased while Lon knockdown sensitized the cytotoxicity towards cisplatin treatment. We further identified that cisplatin-induced Lon activates the PYK2-SRC-STAT3 pathway to stimulate Bcl-2 and IL-6 expression, leading to the cytotoxicity resistance to cisplatin. Intriguingly, we found that activation of this pathway is through an increase of intracellular calcium (Ca2+) via NCLX, a mitochondrial Na+/Ca2+ exchanger. We then verified that NCLX expression is dependent on Lon levels; Lon interacts with and activates NCLX activity. NCLX inhibition increased the level of mitochondrial calcium and sensitized the cytotoxicity to cisplatin in vitro and in vivo. In summary, mitochondrial Lon-induced cisplatin resistance is mediated by calcium release into cytosol through NCLX, which activates calcium-dependent PYK2-SRC-STAT3-IL-6 pathway. Thus, our work uncovers the novel retrograde signaling by mitochondrial Lon on resistance to cisplatin-induced mtDNA stress, indicating the potential use of Lon and NCLX inhibitors for better clinical outcomes in chemoresistant cancer patients.


Lysyl oxidase-like 2 promotes stemness and enhances antitumor effects of gefitinib in head and neck cancer via IFIT1 and IFIT3.

  • Yi-Jie Lu‎ et al.
  • Cancer science‎
  • 2023‎

Lysyl oxidase-like 2 (LOXL2) is a matrix-remodeling enzyme that has recently been identified as an important regulator of tumor progression and metastasis. This study discovered that LOXL2 expression in oral squamous cell carcinoma (OSCC) tissues was significantly associated with tumor clinical stage, lymph node metastasis and patients' overall survival time. LOXL2-overexpressing human buccal SCC TW2.6 (TW2.6/LOXL2) and hypopharyngeal SCC FaDu (FaDu/LOXL2) cells exhibited enhanced migration, invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes, independently of its enzymatic activity. Moreover, TW2.6/LOXL2 significantly increased tumor-initiating frequency in SCID mice. We further demonstrated that LOXL2 increased the levels of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) and IFIT3 in TW2.6/LOXL2 and FaDu/LOXL2 cells. We also identified IFIT1 and IFIT3 as key downstream components of LOXL2 action in migration, invasion, EMT, and CSC phenotypes in TW2.6 and FaDu cells. Furthermore, a significant positive correlation between LOXL2 expression and IFIT1 and IFIT3 overexpression in human OSCC tissues was observed. In addition, TW2.6/LOXL2 and FaDu/LOXL2 cells were 3.3- to 3.6-fold more susceptible to the epidermal growth factor receptor (EGFR) inhibitor gefitinib than were their respective control cells. The antitumor effect of gefitinib on orthotopic TW2.6/LOXL2 xenograft tumor was fourfold higher than that on controls. Our results indicate that LOXL2 expression is a strong prognostic factor for OSCC and may be used as a marker to identify patients most likely to respond to EGFR-targeted therapy.


Effects of exercise intensity on spatial memory performance and hippocampal synaptic plasticity in transient brain ischemic rats.

  • Pei-Cheng Shih‎ et al.
  • PloS one‎
  • 2013‎

Memory impairment is commonly noted in stroke survivors, and can lead to delay of functional recovery. Exercise has been proved to improve memory in adult healthy subjects. Such beneficial effects are often suggested to relate to hippocampal synaptic plasticity, which is important for memory processing. Previous evidence showed that in normal rats, low intensity exercise can improve synaptic plasticity better than high intensity exercise. However, the effects of exercise intensities on hippocampal synaptic plasticity and spatial memory after brain ischemia remain unclear. In this study, we investigated such effects in brain ischemic rats. The middle cerebral artery occlusion (MCAO) procedure was used to induce brain ischemia. After the MCAO procedure, rats were randomly assigned to sedentary (Sed), low-intensity exercise (Low-Ex), or high-intensity exercise (High-Ex) group. Treadmill training began from the second day post MCAO procedure, 30 min/day for 14 consecutive days for the exercise groups. The Low-Ex group was trained at the speed of 8 m/min, while the High-Ex group at the speed of 20 m/min. The spatial memory, hippocampal brain-derived neurotrophic factor (BDNF), synapsin-I, postsynaptic density protein 95 (PSD-95), and dendritic structures were examined to document the effects. Serum corticosterone level was also quantified as stress marker. Our results showed the Low-Ex group, but not the High-Ex group, demonstrated better spatial memory performance than the Sed group. Dendritic complexity and the levels of BDNF and PSD-95 increased significantly only in the Low-Ex group as compared with the Sed group in bilateral hippocampus. Notably, increased level of corticosterone was found in the High-Ex group, implicating higher stress response. In conclusion, after brain ischemia, low intensity exercise may result in better synaptic plasticity and spatial memory performance than high intensity exercise; therefore, the intensity is suggested to be considered during exercise training.


Prodigiosin down-regulates SKP2 to induce p27(KIP1) stabilization and antiproliferation in human lung adenocarcinoma cells.

  • Hsin-Ying Hsieh‎ et al.
  • British journal of pharmacology‎
  • 2012‎

High levels of SKP2 are a poor prognostic factor in multiple human cancers and mostly correlate with low p27(KIP1) levels. Prodigiosin is a bacterial tripyrrole pigment with strong pro-apoptotic activity. Induction of cell cycle blockade underlies one of its anticancer actions but the mechanisms involved are unclear. The aim of this study was to explore the role of the SKP2-p27(KIP1) axis in prodigiosin's cytostatic effect on human lung adenocarcinoma cells.


Fractional anisotropy in corpus callosum is associated with facilitation of motor representation during ipsilateral hand movements.

  • Shin-Yi Chiou‎ et al.
  • PloS one‎
  • 2014‎

Coactivation of primary motor cortex ipsilateral to a unilateral movement (M1(ipsilateral)) has been observed, and the magnitude of activation is influenced by the contracting muscles. It has been suggested that the microstructural integrity of the callosal motor fibers (CMFs) connecting M1 regions may reflect the observed response. However, the association between the structural connectivity of CMFs and functional changes in M1(ipsilateral) remains unclear. The purpose of this study was to investigate the relationship between functional changes within M1(ipsilateral) during unilateral arm or leg movements and the microstructure of the CMFs connecting both homotopic representations (arm or leg).


The ATR-mediated S phase checkpoint prevents rereplication in mammalian cells when licensing control is disrupted.

  • Enbo Liu‎ et al.
  • The Journal of cell biology‎
  • 2007‎

DNA replication in eukaryotic cells is tightly controlled by a licensing mechanism, ensuring that each origin fires once and only once per cell cycle. We demonstrate that the ataxia telangiectasia and Rad3 related (ATR)-mediated S phase checkpoint acts as a surveillance mechanism to prevent rereplication. Thus, disruption of licensing control will not induce significant rereplication in mammalian cells when the ATR checkpoint is intact. We also demonstrate that single-stranded DNA (ssDNA) is the initial signal that activates the checkpoint when licensing control is compromised in mammalian cells. We demonstrate that uncontrolled DNA unwinding by minichromosome maintenance proteins upon Cdt1 overexpression is an important mechanism that leads to ssDNA accumulation and checkpoint activation. Furthermore, we show that replication protein A 2 and retinoblastoma protein are both downstream targets for ATR that are important for the inhibition of DNA rereplication. We reveal the molecular mechanisms by which the ATR-mediated S phase checkpoint pathway prevents DNA rereplication and thus significantly improve our understanding of how rereplication is prevented in mammalian cells.


The effects of Ai Chi for balance in individuals with chronic stroke: a randomized controlled trial.

  • Pei-Hsin Ku‎ et al.
  • Scientific reports‎
  • 2020‎

This study investigated the effectiveness of Ai Chi compared to conventional water-based exercise on balance performance in individuals with chronic stroke. A total of 20 individuals with chronic stroke were randomly allocated to receive either Ai Chi or conventional water-based exercise for 60 min/time, 3 times/week, and a total of 6 weeks. Balance performance assessed by limit of stability (LOS) test and Berg balance scale (BBS). Fugl-Meyer assessment (FMA) and gait performance were documented for lower extremity movement control and walking ability, respectively. Excursion and movement velocity in LOS test was significantly increased in anteroposterior axis after receiving Ai Chi (p = 0.005 for excursion, p = 0.013 for velocity) but not conventional water-based exercise. In particular, the improvement of endpoint excursion in the Ai Chi group has significant inter-group difference (p = 0.001). Both groups showed significant improvement in BBS and FMA yet the Ai Chi group demonstrated significantly better results than control group (p = 0.025). Ai Chi is feasible for balance training in stroke, and is able to improve weight shifting in anteroposterior axis, functional balance, and lower extremity control as compared to conventional water-based exercise.


Identification of Novel Cdc7 Kinase Inhibitors as Anti-Cancer Agents that Target the Interaction with Dbf4 by the Fragment Complementation and Drug Repositioning Approach.

  • An Ning Cheng‎ et al.
  • EBioMedicine‎
  • 2018‎

Cdc7-Dbf4 is a conserved serine/threonine kinase that plays an important role in initiation of DNA replication and DNA damage tolerance in eukaryotic cells. Cdc7 has been found overexpressed in human cancer cell lines and tumor tissues, and the knockdown of Cdc7 expression causes an p53-independent apoptosis, suggesting that Cdc7 is a target for cancer therapy. Only a handful Cdc7 kinase inhibitors have been reported. All Cdc7 kinase inhibitors, including PHA-767491, were identified and characterized as ATP-competitive inhibitors. Unfortunately, these ATP-competitive Cdc7 inhibitors have no good effect on clinical trial.


Maintaining Gait Performance by Cortical Activation during Dual-Task Interference: A Functional Near-Infrared Spectroscopy Study.

  • Chia-Feng Lu‎ et al.
  • PloS one‎
  • 2015‎

In daily life, mobility requires walking while performing a cognitive or upper-extremity motor task. Although previous studies have evaluated the effects of dual tasks on gait performance, few studies have evaluated cortical activation and its association with gait disturbance during dual tasks. In this study, we simultaneously assessed gait performance and cerebral oxygenation in the bilateral prefrontal cortices (PFC), premotor cortices (PMC), and supplemental motor areas (SMA), using functional near-infrared spectroscopy, in 17 young adults performing dual tasks. Each participant was evaluated while performing normal-pace walking (NW), walking while performing a cognitive task (WCT), and walking while performing a motor task (WMT). Our results indicated that the left PFC exhibited the strongest and most sustained activation during WCT, and that NW and WMT were associated with minor increases in oxygenation levels during their initial phases. We observed increased activation in channels in the SMA and PMC during WCT and WMT. Gait data indicated that WCT and WMT both caused reductions in walking speed, but these reductions resulted from differing alterations in gait properties. WCT was associated with significant changes in cadence, stride time, and stride length, whereas WMT was associated with reductions in stride length only. During dual-task activities, increased activation of the PMC and SMA correlated with declines in gait performance, indicating a control mechanism for maintaining gait performance during dual tasks. Thus, the regulatory effects of cortical activation on gait behavior enable a second task to be performed while walking.


4beta-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest.

  • Ching-Yu Yen‎ et al.
  • BMC cancer‎
  • 2010‎

The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown.


Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-Fos expression and reverses spatial memory deficits in rats.

  • Yi-Wei Tsai‎ et al.
  • PloS one‎
  • 2011‎

Memory impairment is a frequent complication of brain ischemia. Neurogenesis is implicated in learning and memory and is regulated by the transcription factor c-Fos. Preconditioning intermittent hypoxia (IH) attenuates ischemia-related memory impairments, but it is not known whether post-ischemia IH intervention has a similar effect. We investigated the effects of post-ischemia IH on hippocampal neurogenesis and c-Fos expression as well as spatial learning and memory in rats.


Positive Effects of Specific Exercise and Novel Turning-based Treadmill Training on Turning Performance in Individuals with Parkinson's disease: A Randomized Controlled Trial.

  • Fang-Yu Cheng‎ et al.
  • Scientific reports‎
  • 2016‎

Two different training strategies to improve turning performance in individuals with Parkinson's disease (PD) were designed and investigated in this study. Subjects were randomly assigned to a specific exercise group, turning-based training group, or control group to receive training that emphasized balance and strengthening, turning-based treadmill training, and general exercise training, respectively. A total of 12 30-min training sessions followed by 10 min of turning training on a level surface were administered over 4 to 6 weeks. The results (n = 12 for each group) showed that both the specific exercise and turning-based training group experienced improved turning performance, the primary outcome, compared with the control group (specific exercise, 33% change, p = 0.016; turning-based training, 35% change, p = 0.021). For the secondary outcomes, the specific exercise group performed better than the control group on the Tinetti balance scale, limit of stability test and lower extremity extensor and abductor strength. The turning-based training groups performed better than the control group in sensory organization and ankle plantar flexor strength. In summary, specific exercise training and turning-based treadmill training were both effective in improving turning performance in participants with PD. However, the improvements in turning performance of these two groups resulted from improving different aspects of impairment in individuals with PD.


The SDF1-CXCR4 Axis Is Involved in the Hyperbaric Oxygen Therapy-Mediated Neuronal Cells Migration in Transient Brain Ischemic Rats.

  • Ray-Yau Wang‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Neurogenesis is a physiological response after cerebral ischemic injury to possibly repair the damaged neural network. Therefore, promoting neurogenesis is very important for functional recovery after cerebral ischemic injury. Our previous research indicated that hyperbaric oxygen therapy (HBOT) exerted neuroprotective effects, such as reducing cerebral infarction volume. The purposes of this study were to further explore the effects of HBOT on the neurogenesis and the expressions of cell migration factors, including the stromal cell-derived factor 1 (SDF1) and its target receptor, the CXC chemokine receptor 4 (CXCR4). Thirty-two Sprague-Dawley rats were divided into the control or HBO group after receiving transient middle cerebral artery occlusion (MCAO). HBOT began to intervene 24 h after MCAO under the pressure of 3 atmospheres for one hour per day for 21 days. Rats in the control group were placed in the same acrylic box without HBOT during the experiment. After the final intervention, half of the rats in each group were cardio-perfused with ice-cold saline followed by 4% paraformaldehyde under anesthesia. The brains were removed, dehydrated and cut into serial 20μm coronal sections for immunofluorescence staining to detect the markers of newborn cell (BrdU+), mature neuron cell (NeuN+), SDF1, and CXCR4. The affected motor cortex of the other half rats in each group was separated under anesthesia and used to detect the expressions of brain-derived neurotrophic factor (BDNF), SDF1, and CXCR4. Motor function was tested by a ladder-climbing test before and after the experiment. HBOT significantly enhanced neurogenesis in the penumbra area and promoted the expressions of SDF1 and CXCR4. The numbers of BrdU+/SDF1+, BrdU+/CXCR4+, and BrdU+/NeuN+ cells and BDNF concentrations in the penumbra were all significantly increased in the HBO group when compared with the control group. The motor functions were improved in both groups, but there was a significant difference between groups in the post-test. Our results indicated that HBOT for 21 days enhanced neurogenesis and promoted cell migration toward the penumbra area in transient brain ischemic rats. HBOT also increased BDNF expression, which might further promote the reconstructions of the impaired neural networks and restore motor function.


AXL phosphorylates and up-regulates TNS2 and its implications in IRS-1-associated metabolism in cancer cells.

  • Li-Chun Cheng‎ et al.
  • Journal of biomedical science‎
  • 2018‎

TNS2 is a focal adhesions protein and a binding partner for many proteins, including the receptor tyrosine kinase Axl. Although TNS2 can bind with Axl, the details of their interactions have not been elucidated. TNS2 is involved in IRS-1 signaling pathway. In this study, we confirmed the relationship between TNS2 expression and the expression of Axl, IRS-1, PDK1 and Glut4 in pancreatic cancer patients.


Mitochondrial Lon-induced mitophagy benefits hypoxic resistance via Ca2+-dependent FUNDC1 phosphorylation at the ER-mitochondria interface.

  • Ananth Ponneri Babuharisankar‎ et al.
  • Cell death & disease‎
  • 2023‎

During hypoxia, FUNDC1 acts as a mitophagy receptor and accumulates at the ER (endoplasmic reticulum)-mitochondria contact sites (EMC), also called mitochondria-associated membranes (MAM). In mitophagy, the ULK1 complex phosphorylates FUNDC1(S17) at the EMC site. However, how mitochondria sense the stress and send the signal from the inside to the outside of mitochondria to trigger mitophagy is still unclear. Mitochondrial Lon was reported to be localized at the EMC under stress although the function remained unknown. In this study, we explored the mechanism of how mitochondrial sensors of hypoxia trigger and stabilize the FUNDC1-ULK1 complex by Lon in the EMC for cell survival and cancer progression. We demonstrated that Lon is accumulated in the EMC and associated with FUNDC1-ULK1 complex to induce mitophagy via chaperone activity under hypoxia. Intriguingly, we found that Lon-induced mitophagy is through binding with mitochondrial Na+/Ca2+ exchanger (NCLX) to promote FUNDC1-ULK1-mediated mitophagy at the EMC site in vitro and in vivo. Accordingly, our findings highlight a novel mechanism responsible for mitophagy initiation under hypoxia by chaperone Lon in mitochondria through the interaction with FUNDC1-ULK1 complex at the EMC site. These findings provide a direct correlation between Lon and mitophagy on cell survival and cancer progression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: