Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

Cardiovascular magnetic resonance detects the progression of impaired myocardial perfusion reserve and increased left-ventricular mass in mice fed a high-fat diet.

  • Nivedita K Naresh‎ et al.
  • Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance‎
  • 2016‎

Impaired myocardial perfusion reserve (MPR) is prevalent in obesity and diabetes, even in the absence of obstructive coronary artery disease (CAD), and is prognostic of adverse events. We sought to establish the time course of reduced MPR and to investigate associated vascular and tissue properties in mice fed a high-fat diet (HFD), as they are an emerging model of human obesity, diabetes, and reduced MPR without obstructive CAD.


mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway.

  • Timothy R Peterson‎ et al.
  • Cell‎
  • 2011‎

The nutrient- and growth factor-responsive kinase mTOR complex 1 (mTORC1) regulates many processes that control growth, including protein synthesis, autophagy, and lipogenesis. Through unknown mechanisms, mTORC1 promotes the function of SREBP, a master regulator of lipo- and sterolgenic gene transcription. Here, we demonstrate that mTORC1 regulates SREBP by controlling the nuclear entry of lipin 1, a phosphatidic acid phosphatase. Dephosphorylated, nuclear, catalytically active lipin 1 promotes nuclear remodeling and mediates the effects of mTORC1 on SREBP target gene, SREBP promoter activity, and nuclear SREBP protein abundance. Inhibition of mTORC1 in the liver significantly impairs SREBP function and makes mice resistant, in a lipin 1-dependent fashion, to the hepatic steatosis and hypercholesterolemia induced by a high-fat and -cholesterol diet. These findings establish lipin 1 as a key component of the mTORC1-SREBP pathway.


The importance of serine 161 in the sodium channel beta3 subunit for modulation of Na(V)1.2 gating.

  • Ellen C Merrick‎ et al.
  • Pflugers Archiv : European journal of physiology‎
  • 2010‎

Voltage-gated sodium (Na) channels contribute to the regulation of cellular excitability due to their role in the generation and propagation of action potentials. They are composed of a pore-forming alpha subunit and are modulated by at least two of four distinct beta subunits (beta1-4). Recent studies have implicated a role for the intracellular domain of beta subunits in modulating Na channel gating and trafficking. In beta3, the intracellular domain contains a serine residue at position 161 that is replaced by an alanine in beta1. In this study, we have probed the functional importance of beta3S161 for modulating Na channel gating. Wild-type beta3 and point mutations beta3S161A or beta3S161E were individually co-expressed in HEK 293 cells stably expressing human Na(v)1.2. WTbeta3 expression increased Na current density, shifted steady-state inactivation in a depolarized direction, and accelerated the kinetics of recovery from inactivation of the Na current. Analogous effects were observed with beta3S161E co-expression. In contrast, beta3S161A abolished the shifts in steady-state inactivation and recovery from inactivation of the Na current, but did increase Na current density. Immunocytochemistry and Western blot experiments demonstrate membrane expression of WTbeta3, beta3S161E, and beta3S161A, suggesting that the differences in Na channel gating were not due to disruptions in beta subunit trafficking. These studies suggest that modification of beta3S161 may be important in modulating Na-channel gating.


Lysophosphatidic acid counteracts glucagon-induced hepatocyte glucose production via STAT3.

  • Evan P Taddeo‎ et al.
  • Scientific reports‎
  • 2017‎

Hepatic glucose production (HGP) is required to maintain normoglycemia during fasting. Glucagon is the primary hormone responsible for increasing HGP; however, there are many additional hormone and metabolic factors that influence glucagon sensitivity. In this study we report that the bioactive lipid lysophosphatidic acid (LPA) regulates hepatocyte glucose production by antagonizing glucagon-induced expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK). Treatment of primary hepatocytes with exogenous LPA blunted glucagon-induced PEPCK expression and glucose production. Similarly, knockout mice lacking the LPA-degrading enzyme phospholipid phosphate phosphatase type 1 (PLPP1) had a 2-fold increase in endogenous LPA levels, reduced PEPCK levels during fasting, and decreased hepatic gluconeogenesis in response to a pyruvate challenge. Mechanistically, LPA antagonized glucagon-mediated inhibition of STAT3, a transcriptional repressor of PEPCK. Importantly, LPA did not blunt glucagon-stimulated glucose production or PEPCK expression in hepatocytes lacking STAT3. These data identify a novel role for PLPP1 activity and hepatocyte LPA levels in glucagon sensitivity via a mechanism involving STAT3.


Feeding desensitizes A1 adenosine receptors in adipose through FOXO1-mediated transcriptional regulation.

  • Mitchell E Granade‎ et al.
  • Molecular metabolism‎
  • 2022‎

Adipose tissue is a critical regulator of energy balance that must rapidly shift its metabolism between fasting and feeding to maintain homeostasis. Adenosine has been characterized as an important regulator of adipocyte metabolism primarily through its actions on A1 adenosine receptors (A1R). We sought to understand the role A1R plays specifically in adipocytes during fasting and feeding to regulate glucose and lipid metabolism.


Brain endothelial cell TRPA1 channels initiate neurovascular coupling.

  • Pratish Thakore‎ et al.
  • eLife‎
  • 2021‎

Cerebral blood flow is dynamically regulated by neurovascular coupling to meet the dynamic metabolic demands of the brain. We hypothesized that TRPA1 channels in capillary endothelial cells are stimulated by neuronal activity and instigate a propagating retrograde signal that dilates upstream parenchymal arterioles to initiate functional hyperemia. We find that activation of TRPA1 in capillary beds and post-arteriole transitional segments with mural cell coverage initiates retrograde signals that dilate upstream arterioles. These signals exhibit a unique mode of biphasic propagation. Slow, short-range intercellular Ca2+ signals in the capillary network are converted to rapid electrical signals in transitional segments that propagate to and dilate upstream arterioles. We further demonstrate that TRPA1 is necessary for functional hyperemia and neurovascular coupling within the somatosensory cortex of mice in vivo. These data establish endothelial cell TRPA1 channels as neuronal activity sensors that initiate microvascular vasodilatory responses to redirect blood to regions of metabolic demand.


Adipose-specific ATGL ablation reduces burn injury-induced metabolic derangements in mice.

  • Supreet Kaur‎ et al.
  • Clinical and translational medicine‎
  • 2021‎

Hypermetabolism following severe burn injuries is associated with adipocyte dysfunction, elevated beige adipocyte formation, and increased energy expenditure. The resulting catabolism of adipose leads to detrimental sequelae such as fatty liver, increased risk of infections, sepsis, and even death. While the phenomenon of pathological white adipose tissue (WAT) browning is well-documented in cachexia and burn models, the molecular mechanisms are essentially unknown. Here, we report that adipose triglyceride lipase (ATGL) plays a central role in burn-induced WAT dysfunction and systemic outcomes. Targeting adipose-specific ATGL in a murine (AKO) model resulted in diminished browning, decreased circulating fatty acids, and mitigation of burn-induced hepatomegaly. To assess the clinical applicability of targeting ATGL, we demonstrate that the selective ATGL inhibitor atglistatin mimics the AKO results, suggesting a path forward for improving patient outcomes.


Adaptive thermogenesis in brown adipose tissue involves activation of pannexin-1 channels.

  • Subramanian Senthivinayagam‎ et al.
  • Molecular metabolism‎
  • 2021‎

Brown adipose tissue (BAT) is specialized in thermogenesis. The conversion of energy into heat in brown adipocytes proceeds via stimulation of β-adrenergic receptor (βAR)-dependent signaling and activation of mitochondrial uncoupling protein 1 (UCP1). We have previously demonstrated a functional role for pannexin-1 (Panx1) channels in white adipose tissue; however, it is not known whether Panx1 channels play a role in the regulation of brown adipocyte function. Here, we tested the hypothesis that Panx1 channels are involved in brown adipocyte activation and thermogenesis.


Predicting small molecule binding pockets on diacylglycerol kinases using chemoproteomics and AlphaFold.

  • Roberto Mendez‎ et al.
  • RSC chemical biology‎
  • 2023‎

Diacylglycerol kinases (DGKs) are metabolic kinases involved in regulating cellular levels of diacylglycerol and phosphatidic lipid messengers. The development of selective inhibitors for individual DGKs would benefit from discovery of protein pockets available for inhibitor binding in cellular environments. Here we utilized a sulfonyl-triazole probe (TH211) bearing a DGK fragment ligand for covalent binding to tyrosine and lysine sites on DGKs in cells that map to predicted small molecule binding pockets in AlphaFold structures. We apply this chemoproteomics-AlphaFold approach to evaluate probe binding of DGK chimera proteins engineered to exchange regulatory C1 domains between DGK subtypes (DGKα and DGKζ). Specifically, we discovered loss of TH211 binding to a predicted pocket in the catalytic domain when C1 domains on DGKα were exchanged that correlated with impaired biochemical activity as measured by a DAG phosphorylation assay. Collectively, we provide a family-wide assessment of accessible sites for covalent targeting that combined with AlphaFold revealed predicted small molecule binding pockets for guiding future inhibitor development of the DGK superfamily.


Chemoproteomic capture of RNA binding activity in living cells.

  • Andrew J Heindel‎ et al.
  • Nature communications‎
  • 2023‎

Proteomic methods for RNA interactome capture (RIC) rely principally on crosslinking native or labeled cellular RNA to enrich and investigate RNA-binding protein (RBP) composition and function in cells. The ability to measure RBP activity at individual binding sites by RIC, however, has been more challenging due to the heterogenous nature of peptide adducts derived from the RNA-protein crosslinked site. Here, we present an orthogonal strategy that utilizes clickable electrophilic purines to directly quantify protein-RNA interactions on proteins through photoaffinity competition with 4-thiouridine (4SU)-labeled RNA in cells. Our photo-activatable-competition and chemoproteomic enrichment (PACCE) method facilitated detection of >5500 cysteine sites across ~3000 proteins displaying RNA-sensitive alterations in probe binding. Importantly, PACCE enabled functional profiling of canonical RNA-binding domains as well as discovery of moonlighting RNA binding activity in the human proteome. Collectively, we present a chemoproteomic platform for global quantification of protein-RNA binding activity in living cells.


Obesogenic diet disrupts tissue-specific mitochondrial gene signatures in the artery and capillary endothelium.

  • Luke S Dunaway‎ et al.
  • Physiological genomics‎
  • 2024‎

Endothelial cells (ECs) adapt to the unique needs of their resident tissue and metabolic perturbations, such as obesity. We sought to understand how obesity affects EC metabolic phenotypes, specifically mitochondrial gene expression. We investigated the mesenteric and adipose endothelium because these vascular beds have distinct roles in lipid homeostasis. Initially, we performed bulk RNA sequencing on ECs from mouse adipose and mesenteric vasculatures after a normal chow (NC) diet or high-fat diet (HFD) and found higher mitochondrial gene expression in adipose ECs compared with mesenteric ECs in both NC and HFD mice. Next, we performed single-cell RNA sequencing and categorized ECs as arterial, capillary, venous, or lymphatic. We found mitochondrial genes to be enriched in adipose compared with mesentery under NC conditions in artery and capillary ECs. After HFD, these genes were decreased in adipose ECs, becoming like mesenteric ECs. Transcription factor analysis revealed that peroxisome proliferator-activated receptor-γ (PPAR-γ) had high specificity in NC adipose artery and capillary ECs. These findings were recapitulated in single-nuclei RNA-sequencing data from human visceral adipose. The sum of these findings suggests that mesenteric and adipose arterial ECs metabolize lipids differently, and the transcriptional phenotype of the vascular beds converges in obesity due to downregulation of PPAR-γ in adipose artery and capillary ECs.NEW & NOTEWORTHY Using bulk and single-cell RNA sequencing on endothelial cells from adipose and mesentery, we found that an obesogenic diet induces a reduction in adipose endothelial oxidative phosphorylation gene expression, resulting in a phenotypic convergence of mesenteric and adipose endothelial cells. Furthermore, we found evidence that PPAR-γ drives this phenotypic shift. Mining of human data sets segregated based on body mass index supported these findings. These data point to novel mechanisms by which obesity induces endothelial dysfunction.


Spontaneous lung dysfunction and fibrosis in mice lacking connexin 40 and endothelial cell connexin 43.

  • Michael Koval‎ et al.
  • The American journal of pathology‎
  • 2011‎

Gap junction proteins (connexins) facilitate intercellular communication and serve several roles in regulation of tissue function and remodeling. To examine the physiologic effects of depleting two prominent endothelial connexins, Cx40 and Cx43, transgenic mice were generated by breeding Cx40-deficient mice (Cx40(-/-)) with a vascular endothelial cell (VEC)-specific Cx43-deficient mouse strain (VEC Cx43(-/-)) to produce double-connexin knockout mice (VEC Cx43(-/-)/Cx40(-/-)). The life span in VEC Cx43(-/-)/Cx40(-/-) mice was dramatically shortened, which correlated with severe spontaneous lung abnormalities as the mice aged including increased fibrosis, aberrant alveolar remodeling, and increased lung fibroblast content. Moreover, VEC Cx43(-/-)/Cx40(-/-) mice exhibited cardiac hypertrophy and hypertension. Because VEC Cx43(-/-)/Cx40(-/-) mice demonstrated phenotypic hallmarks that were remarkably similar to those in mice deficient in caveolin-1, pulmonary caveolin expression was examined. Lungs from VEC Cx43(-/-)/Cx40(-/-) mice demonstrated significantly decreased expression of caveolin-1 and caveolin-2. This suggests that expression of caveolin-1 may be linked to expression of Cx40 and endothelial Cx43. Moreover, the phenotype of caveolin-1(-/-) mice and VEC Cx43(-/-)/Cx40(-/-) mice may arise via a common mechanism.


Localized expression of an Ins(1,4,5)P3 receptor at the myoendothelial junction selectively regulates heterocellular Ca2+ communication.

  • Brant E Isakson‎
  • Journal of cell science‎
  • 2008‎

Inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] originating in the vascular smooth-muscle cells (VSMCs) has been shown to modulate the Ca(2+) stores in endothelial cells (ECs). However, the reverse is not found, suggesting that Ins(1,4,5)P(3) movement might be unidirectional across gap junctions at the myoendothelial junction (MEJ), or that distribution of the Ins(1,4,5)P(3) receptor [Ins(1,4,5)P(3)-R] is different between the two cell types. To study trans-junctional communication at the MEJ, we used a vascular-cell co-culture model system and selectively modified the connexin composition in gap junctions in the two cell types. We found no correlation between modification of connexin expression and Ins(1,4,5)P(3) signaling between ECs and VSMCs. We next explored the distribution of Ins(1,4,5)P(3)-R isoforms in the two cell types and found that Ins(1,4,5)P(3)-R1 was selectively localized to the EC side of the MEJ. Using siRNA, selective knockdown of Ins(1,4,5)P(3)-R1 in ECs eliminated the secondary Ins(1,4,5)P(3)-induced response in these cells. By contrast, siRNA knockdown of Ins(1,4,5)P(3)-R2 or Ins(1,4,5)P(3)-R3 in ECs did not alter the EC response to VSMC stimulation. The addition of 5-phosphatase inhibitor (5-PI) to ECs that were transfected with Ins(1,4,5)P(3)-R1 siRNA rescued the Ins(1,4,5)P(3) response, indicating that metabolic degradation of Ins(1,4,5)P(3) is an important part of EC-VSMC coupling. To test this concept, VSMCs were loaded with 5-PI and BAPTA-loaded ECs were stimulated, inducing an Ins(1,4,5)P(3)-mediated response in VSMCs; this indicated that Ins(1,4,5)P(3) is bidirectional across the gap junction at the MEJ. Therefore, localization of Ins(1,4,5)P(3)-R1 on the EC side of the MEJ allows the ECs to respond to Ins(1,4,5)P(3) from VSMCs, whereas Ins(1,4,5)P(3) moving from ECs to VSMCs is probably metabolized before binding to a receptor. This data implicates the MEJ as being a unique cell-signaling domain in the vasculature.


Rapamycin prevents bronchiolitis obliterans through increasing infiltration of regulatory B cells in a murine tracheal transplantation model.

  • Yunge Zhao‎ et al.
  • The Journal of thoracic and cardiovascular surgery‎
  • 2016‎

B lymphocytes are generally considered to be activators of the immune response; however, recent findings have shown that a subtype of B lymphocytes, regulatory B lymphocytes, play a role in attenuating the immune response. Bronchiolitis obliterans remains the major limitation to modern-day lung transplantation. The role of regulatory B lymphocytes in bronchiolitis obliterans has not been elucidated. We hypothesized that regulatory B lymphocytes play a role in the attenuation of bronchiolitis obliterans.


The protein kinase C super-family member PKN is regulated by mTOR and influences differentiation during prostate cancer progression.

  • Chun-Song Yang‎ et al.
  • The Prostate‎
  • 2017‎

Phosphoinositide-3 (PI-3) kinase signaling has a pervasive role in cancer. One of the key effectors of PI-3 kinase signaling is AKT, a kinase that promotes growth and survival in a variety of cancers. Genetically engineered mouse models of prostate cancer have shown that AKT signaling is sufficient to induce prostatic epithelial neoplasia (PIN), but insufficient for progression to adenocarcinoma. This contrasts with the phenotype of mice with prostate-specific deletion of Pten, where excessive PI-3 kinase signaling induces both PIN and locally invasive carcinoma. We reasoned that additional PI-3 kinase effector kinases promote prostate cancer progression via activities that provide biological complementarity to AKT. We focused on the PKN kinase family members, which undergo activation in response to PI-3 kinase signaling, show expression changes in prostate cancer, and contribute to cell motility pathways in cancer cells.


Loss of Diacylglycerol Kinase α Enhances Macrophage Responsiveness.

  • Laryssa C Manigat‎ et al.
  • Frontiers in immunology‎
  • 2021‎

The diacylglycerol kinases (DGKs) are a family of enzymes responsible for the conversion of diacylglycerol (DAG) to phosphatidic acid (PA). In addition to their primary function in lipid metabolism, DGKs have recently been identified as potential therapeutic targets in multiple cancers, including glioblastoma (GBM) and melanoma. Aside from its tumorigenic properties, DGKα is also a known promoter of T-cell anergy, supporting a role as a recently-recognized T cell checkpoint. In fact, the only significant phenotype previously observed in Dgka knockout (KO) mice is the enhancement of T-cell activity. Herein we reveal a novel, macrophage-specific, immune-regulatory function of DGKα. In bone marrow-derived macrophages (BMDMs) cultured from wild-type (WT) and KO mice, we observed increased responsiveness of KO macrophages to diverse stimuli that yield different phenotypes, including LPS, IL-4, and the chemoattractant MCP-1. Knockdown (KD) of Dgka in a murine macrophage cell line resulted in similar increased responsiveness. Demonstrating in vivo relevance, we observed significantly smaller wounds in Dgka-/- mice with full-thickness cutaneous burns, a complex wound healing process in which macrophages play a key role. The burned area also demonstrated increased numbers of macrophages. In a cortical stab wound model, Dgka-/- brains show increased Iba1+ cell numbers at the needle track versus that in WT brains. Taken together, these findings identify a novel immune-regulatory checkpoint function of DGKα in macrophages with potential implications for wound healing, cancer therapy, and other settings.


Macrophage acetyl-CoA carboxylase regulates acute inflammation through control of glucose and lipid metabolism.

  • Scott Yeudall‎ et al.
  • Science advances‎
  • 2022‎

Acetyl-CoA carboxylase (ACC) regulates lipid synthesis; however, its role in inflammatory regulation in macrophages remains unclear. We generated mice that are deficient in both ACC isoforms in myeloid cells. ACC deficiency altered the lipidomic, transcriptomic, and bioenergetic profile of bone marrow-derived macrophages, resulting in a blunted response to proinflammatory stimulation. In response to lipopolysaccharide (LPS), ACC is required for the early metabolic switch to glycolysis and remodeling of the macrophage lipidome. ACC deficiency also resulted in impaired macrophage innate immune functions, including bacterial clearance. Myeloid-specific deletion or pharmacological inhibition of ACC in mice attenuated LPS-induced expression of proinflammatory cytokines interleukin-6 (IL-6) and IL-1β, while pharmacological inhibition of ACC increased susceptibility to bacterial peritonitis in wild-type mice. Together, we identify a critical role for ACC in metabolic regulation of the innate immune response in macrophages, and thus a clinically relevant, unexpected consequence of pharmacological ACC inhibition.


STAT3 suppresses Wnt/β-catenin signaling during the induction phase of primary Myf5+ brown adipogenesis.

  • Marc T Cantwell‎ et al.
  • Cytokine‎
  • 2018‎

Thermogenic fat is a promising target for new therapies in diabetes and obesity. Understanding how thermogenic fat develops is important to develop rational strategies to treat obesity. Previously, we have shown that Tyk2 and STAT3, part of the JAK-STAT pathway, are necessary for proper development of classical brown fat. Using primary preadipocytes isolated from newborn mice we demonstrate that STAT3 is required for differentiation and robust expression of Uncoupling Protein 1 (UCP1). We also confirm that STAT3 is necessary during the early induction stage of differentiation and is dispensable during the later terminal differentiation stage. The inability of STAT3-/- preadipocytes to differentiate can be rescued using Wnt ligand secretion inhibitors when applied during the induction stage. Through chemical inhibition and RNAi, we show that it is the canonical β-catenin pathway that is responsible for the block in differentiation; inhibition or knockdown of β-catenin can fully rescue adipogenesis and UCP1 expression in the STAT3-/- adipocytes. During the induction stage, Wnts 1, 3a, and 10b have increased expression in the STAT3-/- adipocytes, potentially explaining the increased levels and activity of β-catenin. Our results for the first time point towards an interaction between the JAK/STAT pathway and the Wnt/β-catenin pathway during the early stages of in-vitro adipogenesis.


Capillary-associated microglia regulate vascular structure and function through PANX1-P2RY12 coupling in mice.

  • Kanchan Bisht‎ et al.
  • Nature communications‎
  • 2021‎

Microglia are brain-resident immune cells with a repertoire of functions in the brain. However, the extent of their interactions with the vasculature and potential regulation of vascular physiology has been insufficiently explored. Here, we document interactions between ramified CX3CR1 + myeloid cell somata and brain capillaries. We confirm that these cells are bona fide microglia by molecular, morphological and ultrastructural approaches. Then, we give a detailed spatio-temporal characterization of these capillary-associated microglia (CAMs) comparing them with parenchymal microglia (PCMs) in their morphological activities including during microglial depletion and repopulation. Molecularly, we identify P2RY12 receptors as a regulator of CAM interactions under the control of released purines from pannexin 1 (PANX1) channels. Furthermore, microglial elimination triggered capillary dilation, blood flow increase, and impaired vasodilation that were recapitulated in P2RY12-/- and PANX1-/- mice suggesting purines released through PANX1 channels play important roles in activating microglial P2RY12 receptors to regulate neurovascular structure and function.


Red blood cell eNOS is cardioprotective in acute myocardial infarction.

  • Miriam M Cortese-Krott‎ et al.
  • Redox biology‎
  • 2022‎

Red blood cells (RBCs) were shown to transport and release nitric oxide (NO) bioactivity and carry an endothelial NO synthase (eNOS). However, the pathophysiological significance of RBC eNOS for cardioprotection in vivo is unknown. Here we aimed to analyze the role of RBC eNOS in the regulation of coronary blood flow, cardiac performance, and acute myocardial infarction (AMI) in vivo. To specifically distinguish the role of RBC eNOS from the endothelial cell (EC) eNOS, we generated RBC- and EC-specific knock-out (KO) and knock-in (KI) mice by Cre-induced inactivation or reactivation of eNOS. We found that RBC eNOS KO mice had fully preserved coronary dilatory responses and LV function. Instead, EC eNOS KO mice had a decreased coronary flow response in isolated perfused hearts and an increased LV developed pressure in response to elevated arterial pressure, while stroke volume was preserved. Interestingly, RBC eNOS KO showed a significantly increased infarct size and aggravated LV dysfunction with decreased stroke volume and cardiac output. This is consistent with reduced NO bioavailability and oxygen delivery capacity in RBC eNOS KOs. Crucially, RBC eNOS KI mice had decreased infarct size and preserved LV function after AMI. In contrast, EC eNOS KO and EC eNOS KI had no differences in infarct size or LV dysfunction after AMI, as compared to the controls. These data demonstrate that EC eNOS controls coronary vasodilator function, but does not directly affect infarct size, while RBC eNOS limits infarct size in AMI. Therefore, RBC eNOS signaling may represent a novel target for interventions in ischemia/reperfusion after myocardial infarction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: