Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Capturing human trophoblast development with naive pluripotent stem cells in vitro.

  • Shingo Io‎ et al.
  • Cell stem cell‎
  • 2021‎

Trophoblasts are extraembryonic cells that are essential for maintaining pregnancy. Human trophoblasts arise from the morula as trophectoderm (TE), which, after implantation, differentiates into cytotrophoblasts (CTs), syncytiotrophoblasts (STs), and extravillous trophoblasts (EVTs), composing the placenta. Here we show that naïve, but not primed, human pluripotent stem cells (PSCs) recapitulate trophoblast development. Naive PSC-derived TE and CTs (nCTs) recreated human and monkey TE-to-CT transition. nCTs self-renewed as CT stem cells and had the characteristics of proliferating villous CTs and CTs in the cell column of the first trimester. Notably, although primed PSCs differentiated into trophoblast-like cells (BMP4, A83-01, and PD173074 [BAP]-treated primed PSCs [pBAPs]), pBAPs were distinct from nCTs and human placenta-derived CT stem cells, exhibiting properties consistent with the amnion. Our findings establish an authentic paradigm for human trophoblast development, demonstrating the invaluable properties of naive human PSCs. Our system provides a platform to study the molecular mechanisms underlying trophoblast development and related diseases.


Evolutionarily Distinctive Transcriptional and Signaling Programs Drive Human Germ Cell Lineage Specification from Pluripotent Stem Cells.

  • Yoji Kojima‎ et al.
  • Cell stem cell‎
  • 2017‎

Germline specification underlies human reproduction and evolution, but it has proven difficult to study in humans since it occurs shortly after blastocyst implantation. This process can be modeled with human induced pluripotent stem cells (hiPSCs) by differentiating them into primordial germ cell-like cells (hPGCLCs) through an incipient mesoderm-like cell (iMeLC) state. Here, we elucidate the key transcription factors and their interactions with important signaling pathways in driving hPGCLC differentiation from iPSCs. Germline competence of iMeLCs is dictated by the duration and dosage of WNT signaling, which induces expression of EOMES to activate SOX17, a key driver of hPGCLC specification. Upon hPGCLC induction, BMP signaling activates TFAP2C in a SOX17-independent manner. SOX17 and TFAP2C then cooperatively instate an hPGCLC transcriptional program, including BLIMP1 expression. This specification program diverges from its mouse counterpart regarding key transcription factors and their hierarchies, and it provides a foundation for further study of human germ cell development.


In vitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells.

  • Yukiko Ishikura‎ et al.
  • Cell stem cell‎
  • 2021‎

Mammalian male germ-cell development consists of three distinct phases: primordial germ cell (PGC) development, male germ-cell specification for spermatogonium development, and ensuing spermatogenesis. Here, we show an in vitro reconstitution of whole male germ-cell development by pluripotent stem cells (PSCs). Mouse embryonic stem cells (mESCs) are induced into PGC-like cells (mPGCLCs), which are expanded for epigenetic reprogramming. In reconstituted testes under an optimized condition, such mPGCLCs differentiate into spermatogonium-like cells with proper developmental transitions, gene expression, and cell-cycle dynamics and are expanded robustly as germline stem cell-like cells (GSCLCs) with an appropriate androgenetic epigenome. Importantly, GSCLCs show vigorous spermatogenesis, not only upon transplantation into testes in vivo but also under an in vitro culture of testis transplants, and the resultant spermatids contribute to fertile offspring. By uniting faithful recapitulations of the three phases of male germ-cell development, our study creates a paradigm for the in vitro male gametogenesis by PSCs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: