Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Melanocortins contribute to sequential differentiation and enucleation of human erythroblasts via melanocortin receptors 1, 2 and 5.

  • Eriko Simamura‎ et al.
  • PloS one‎
  • 2015‎

In this study, we showed that adrenocorticotropic hormone (ACTH) promoted erythroblast differentiation and increased the enucleation ratio of erythroblasts. Because ACTH was contained in hematopoietic medium as contamination, the ratio decreased by the addition of anti-ACTH antibody (Ab). Addition of neutralizing Abs (nAbs) for melanocortin receptors (MCRs) caused erythroblast accumulation at specific stages, i.e., the addition of anti-MC2R nAb led to erythroblast accumulation at the basophilic stage (baso-E), the addition of anti-MC1R nAb caused accumulation at the polychromatic stage (poly-E), and the addition of anti-MC5R nAb caused accumulation at the orthochromatic stage (ortho-E). During erythroblast differentiation, ERK, STAT5, and AKT were consecutively phosphorylated by erythropoietin (EPO). ERK, STAT5, and AKT phosphorylation was inhibited by blocking MC2R, MC1R, and MC5R, respectively. Finally, the phosphorylation of myosin light chain 2, which is essential for the formation of contractile actomyosin rings, was inhibited by anti-MC5R nAb. Taken together, our study suggests that MC2R and MC1R signals are consecutively required for the regulation of EPO signal transduction in erythroblast differentiation, and that MC5R signal transduction is required to induce enucleation. Thus, melanocortin induces proliferation and differentiation at baso-E, and polarization and formation of an actomyosin contractile ring at ortho-E are required for enucleation.


Baloxavir marboxil, a novel cap-dependent endonuclease inhibitor potently suppresses influenza virus replication and represents therapeutic effects in both immunocompetent and immunocompromised mouse models.

  • Keita Fukao‎ et al.
  • PloS one‎
  • 2019‎

Baloxavir marboxil (BXM) is an orally available small molecule inhibitor of cap-dependent endonuclease (CEN), an essential enzyme in the initiation of mRNA synthesis of influenza viruses. In the present study, we evaluated the efficacy of BXM against influenza virus infection in mouse models. Single-day oral administration of BXM completely prevented mortality due to infection with influenza A and B virus in mice. Moreover, 5-day repeated administration of BXM was more effective for reducing mortality and body weight loss in mice infected with influenza A virus than oseltamivir phosphate (OSP), even when the treatment was delayed up to 96 hours post infection (p.i.). Notably, administration of BXM, starting at 72 hours p.i. led to significant decrease in virus titers of >2-log10 reduction compared to the vehicle control within 24 hours after administration. Virus reduction in the lung was significantly greater than that observed with OSP. In addition, profound and sustained reduction of virus titer was observed in the immunocompromised mouse model without emergence of variants possessing treatment-emergent amino acid substitutions in the target protein. In our immunocompetent and immunocompromised mouse models, delayed treatment with BXM resulted in rapid and potent reduction in infectious virus titer and prevention of signs of influenza infection, suggesting that BXM could extend the therapeutic window for patients with influenza virus infection regardless of the host immune status.


Characterization of pulmonary intimal sarcoma cells isolated from a surgical specimen: In vitro and in vivo study.

  • Takayuki Jujo Sanada‎ et al.
  • PloS one‎
  • 2019‎

Pulmonary intimal sarcoma (PIS) constitutes a rare sarcoma originating from the intimal cells of pulmonary arteries. The pathogenesis of PIS remains to be elucidated and specific treatments have not been established; therefore, prognosis is generally poor. The purpose of our study was to isolate and characterize PIS cells from a specimen resected from a patient with PIS. The surgical specimen was minced and incubated, and spindle-shaped and small cells were successfully isolated and designated as PIS-1. PIS-1 cells at passages 8-9 were used for all in vitro and in vivo experiments. Immunocytochemistry showed that PIS-1 cells were positive for vimentin, murine double minute 2, and CD44 and negative for α-smooth muscle actin, CD31, von Willebrand factor, and desmin. PIS-1 cells exhibited the hallmarks of malignant cells including the potential for autonomous proliferation, anchorage-independent growth, invasion, genetic instability, and tumorigenicity in severe combined immunodeficiency mice. The PIS-1 cells highly expressed tyrosine kinase receptors such as platelet-derived growth factor receptor, and vascular endothelial growth factor receptor 2. Pazopanib, a multi-targeted tyrosine kinase inhibitor, suppressed the proliferation of PIS-1 cells in vitro and the growth of tumors formed from xenografted PIS-1 cells. A PIS cell line was thus successfully established. The PIS-1 cells highly expressed tyrosine kinase receptors, which may be a target for treatment of PIS.


5-aminolevulinic acid (ALA) deficiency causes impaired glucose tolerance and insulin resistance coincident with an attenuation of mitochondrial function in aged mice.

  • Shinichi Saitoh‎ et al.
  • PloS one‎
  • 2018‎

In vertebrates, the initial step in heme biosynthesis is the production of 5-aminolevulinic acid (ALA) by ALA synthase (ALAS). ALA formation is believed to be the rate-limiting step for cellular heme production. Recently, several cohort studies have demonstrated the potential of ALA as a treatment for individuals with prediabetes and type-2 diabetes mellitus. These studies imply that a mechanism exists by which ALA or heme can control glucose metabolism. The ALAS1 gene encodes a ubiquitously expressed isozyme. Mice heterozygous null for ALAS1 (A1+/-s) experience impaired glucose tolerance (IGT) and insulin resistance (IR) beyond 20-weeks of age (aged A1+/-s). IGT and IR were remedied in aged A1+/-s by the oral administration of ALA for 1 week. However, the positive effect of ALA proved to be reversible and was lost upon termination of ALA administration. In the skeletal muscle of aged A1+/-s an attenuation of mitochondrial function is observed, coinciding with IGT and IR. Oral administration of ALA for 1-week brought about only a partial improvement in mitochondrial activity however, a 6-week period of ALA treatment was sufficient to remedy mitochondrial function. Studies on differentiated C2C12 myocytes indicate that the impairment of glucose metabolism is a cell autonomous effect and that ALA deficiency ultimately leads to heme depletion. This sequela is evidenced by a reduction of glucose uptake in C2C12 cells following the knockdown of ALAS1 or the inhibition of heme biosynthesis by succinylacetone. Our data provide in vivo proof that ALA deficiency attenuates mitochondrial function, and causes IGT and IR in an age-dependent manner. The data reveals an unexpected metabolic link between heme and glucose that is relevant to the pathogenesis of IGT/IR.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: