Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Ethyl acetate extract of Kaempferia parviflora inhibits Helicobacter pylori-associated mammalian cell inflammation by regulating proinflammatory cytokine expression and leukocyte chemotaxis.

  • Variya Nemidkanam‎ et al.
  • BMC complementary medicine and therapies‎
  • 2020‎

Kaempferia parviflora (KP) has been used in traditional Thai medicine to cure gastrointestinal disorders since ancient times. Helicobacter pylori is an initiating factor in gastric pathogenesis via activation of massive inflammation, the cumulative effect of which leads to gastric disease progression, including gastric carcinogenesis. Accordingly, the effect of a crude ethyl acetate extract of KP (CEAE-KP) on proinflammatory cytokine production and cell chemotaxis was the focus of this study.


Regional Difference in Myelination in Monocarboxylate Transporter 8 Deficiency: Case Reports and Literature Review of Cases in Japan.

  • Hideyuki Iwayama‎ et al.
  • Frontiers in neurology‎
  • 2021‎

Background: Monocarboxylate transporter 8 (MCT8) is a thyroid hormone transmembrane transporter protein. MCT8 deficiency induces severe X-linked psychomotor retardation. Previous reports have documented delayed myelination in the central white matter (WM) in these patients; however, the regional pattern of myelination has not been fully elucidated. Here, we describe the regional evaluation of myelination in four patients with MCT8 deficiency. We also reviewed the myelination status of previously reported Japanese patients with MCT8 deficiency based on magnetic resonance imaging (MRI). Case Reports: Four patients were genetically diagnosed with MCT8 deficiency at the age of 4-9 months. In infancy, MRI signal of myelination was observed mainly in the cerebellar WM, posterior limb of internal capsule, and the optic radiation. There was progression of myelination with increase in age. Discussion: We identified 36 patients with MCT8 deficiency from 25 families reported from Japan. The available MRI images were obtained at the age of <2 years in 13 patients, between 2 and 4 years in six patients, between 4 and 6 years in three patients, and at ≥6 years in eight patients. Cerebellar WM, posterior limb of internal capsule, and optic radiation showed MRI signal of myelination by the age of 2 years, followed by centrum semiovale and corpus callosum by the age of 4 years. Most regions except for deep anterior WM showed MRI signal of myelination at the age of 6 years. Conclusion: The sequential pattern of myelination in patients with MCT8 deficiency was largely similar to that in normal children; however, delayed myelination of the deep anterior WM was a remarkable finding. Further studies are required to characterize the imaging features of patients with MCT8 deficiency.


Whole-exome analysis of 177 pediatric patients with undiagnosed diseases.

  • Kotaro Narita‎ et al.
  • Scientific reports‎
  • 2022‎

Recently, whole-exome sequencing (WES) has been used for genetic diagnoses of patients who remain otherwise undiagnosed. WES was performed in 177 Japanese patients with undiagnosed conditions who were referred to the Tokai regional branch of the Initiative on Rare and Undiagnosed Diseases (IRUD) (TOKAI-IRUD). This study included only patients who had not previously received genome-wide testing. Review meetings with specialists in various medical fields were held to evaluate the genetic diagnosis in each case, which was based on the guidelines of the American College of Medical Genetics and Genomics. WES identified diagnostic single-nucleotide variants in 66 patients and copy number variants (CNVs) in 11 patients. Additionally, a patient was diagnosed with Angelman syndrome with a complex clinical phenotype upon detection of a paternally derived uniparental disomy (UPD) [upd(15)pat] wherein the patient carried a homozygous DUOX2 p.E520D variant in the UPD region. Functional analysis confirmed that this DUOX2 variant was a loss-of-function missense substitution and the primary cause of congenital hypothyroidism. A significantly higher proportion of genetic diagnoses was achieved compared to previous reports (44%, 78/177 vs. 24-35%, respectively), probably due to detailed discussions and the higher rate of CNV detection.


Fabry disease: identification of 50 novel alpha-galactosidase A mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations.

  • Junaid Shabbeer‎ et al.
  • Human genomics‎
  • 2006‎

Fabry disease, an X-linked recessive inborn error of glycosphingolipid catabolism, results from the deficient activity of the lysosomal exoglycohydrolase, alpha-galactosidase A (EC 3.2.1.22; alpha-Gal A). The molecular lesions in the alpha-Gal A gene causing the classic phenotype of Fabry disease in 66 unrelated families were determined. In 49 families, 50 new mutations were identified, including: 29 missense mutations (N34K, T41I, D93V, R112S, L166G, G171D, M187T, S201Y, S201F, D234E, W236R, D264Y, M267R, V269M, G271S, G271V, S276G, Q283P, A285P, A285D, M290I, P293T, Q312H, Q321R, G328V, E338K, A348P, E358A, Q386P); nine nonsense mutations (C56X, E79X, K127X, Y151X, Y173X, L177X, W262X, Q306X, E338X); five splicing defects (IVS4-1G>A, IVS5-2A>G, IVS5+3A>G, IVS5+4A>G, IVS6-1G>C); four small deletions (18delA, 457delGAC, 567delG, 1096delACCAT); one small insertion (996insC); one 3.1 kilobase Alu-Alu deletion (which included exon 2); and one complex mutation (K374R, 1124delGAG). In 18 families, 17 previously reported mutations were identified, with R112C occurring in two families. In two classically affected families, affected males were identified with two mutations: one with two novel mutations, D264Y and V269M and the other with one novel (Q312H) and one previously reported (A143T) mutation. Transient expression of the individual mutations revealed that D264Y and Q312H were localised in the endoplasmic reticulum and had no detectable or markedly reduced activity, whereas V269M and A143T were localised in lysosomes and had approximately 10 per cent and approximately 35 per cent of expressed wild-type activity, respectively. Structural analyses based on the enzyme's three-dimensional structure predicted the effect of the 29 novel missense mutations on the mutant glycoprotein's structure. Of note, three novel mutations (approximately 10 per cent) were predicted not to significantly alter the glycoprotein's structure; however, they were disease causing. These studies further define the molecular heterogeneity of the alpha-Gal A mutations in classical Fabry disease, permit precise heterozygote detection and prenatal diagnosis, and provide insights into the structural alterations of the mutant enzymes that cause the classic phenotype.


Cholesterol Efflux Capacity of Apolipoprotein A-I Varies with the Extent of Differentiation and Foam Cell Formation of THP-1 Cells.

  • Kouji Yano‎ et al.
  • Journal of lipids‎
  • 2016‎

Apolipoprotein A-I (apoA-I), the main protein component of high-density lipoprotein (HDL), has many protective functions against atherosclerosis, one of them being cholesterol efflux capacity. Although cholesterol efflux capacity measurement is suggested to be a key biomarker for evaluating the risk of development of atherosclerosis, the assay has not been optimized till date. This study aims at investigating the effect of different states of cells on the cholesterol efflux capacity. We also studied the effect of apoA-I modification by homocysteine, a risk factor for atherosclerosis, on cholesterol efflux capacity in different states of cells. The cholesterol efflux capacity of apoA-I was greatly influenced by the extent of differentiation of THP-1 cells and attenuated by excessive foam cell formation. N-Homocysteinylated apoA-I indicated a lower cholesterol efflux capacity than normal apoA-I in the optimized condition, whereas no significant difference was observed in the cholesterol efflux capacity between apoA-I in the excessive cell differentiation or foam cell formation states. These results suggest that cholesterol efflux capacity of apoA-I varies depending on the state of cells. Therefore, the cholesterol efflux assay should be performed using protocols optimized according to the objective of the experiment.


TULIP1 (RALGAPA1) haploinsufficiency with brain development delay.

  • Keiko Shimojima‎ et al.
  • Genomics‎
  • 2009‎

A novel microdeletion of 14q13.1q13.3 was identified in a patient with developmental delay and intractable epilepsy. The 2.2-Mb deletion included 15 genes, of which TULIP1 (approved gene symbol: RALGAPA1)was the only gene highly expressed in the brain. Western blotting revealed reduced amount of TULIP1 in cell lysates derived from immortalized lymphocytes of the patient, suggesting the association between TULIP1 haploinsufficiency and the patient's phenotype, then 140 patients were screened for TULIP1 mutations and four missense mutations were identified. Although all four missense mutations were common with parents, reduced TULIP1 was observed in the cell lysates with a P297T mutation identified in a conserved region among species. A full-length homolog of human TULIP1 was identified in zebrafish with 72% identity to human. Tulip1 was highly expressed in zebrafish brain, and knockdown of which resulted in brain developmental delay. Therefore, we suggest that TULIP1 is a candidate gene for developmental delay.


Fabry disease: novel alpha-galactosidase A 3'-terminal mutations result in multiple transcripts due to aberrant 3'-end formation.

  • Makiko Yasuda‎ et al.
  • American journal of human genetics‎
  • 2003‎

Mutations in the gene that encodes the lysosomal exoglycohydrolase, alpha-galactosidase A (alpha-GalA), cause Fabry disease, an X-linked recessive inborn error of glycosphingolipid catabolism. Human alpha-GalA is one of the rare mammalian genes that has its polyadenylation signal in the coding sequence and lacks a 3' untranslated region (UTR). We identified two novel frameshift mutations, 1277delAA (del2) and 1284delACTT (del4), in unrelated men with classical Fabry disease. Both mutations occurred in the 3' terminus of the coding region and obliterated the termination codon, and del2 also altered the polyadenylation signal. To characterize these mutations, 3' rapid amplification of cDNA ends (RACE) and polymerase chain reactions (PCR) were performed, and the amplicons were subcloned and sequenced. Both mutations generated multiple transcripts with various lengths of 3' terminal sequences, some elongating approximately 1 kb. Mutant transcripts were classified as follows: type I transcripts had terminal in-frame thymidines that created termination codons when polyadenylated, type II had downstream termination codons within the elongated alpha-GalA sequence, and type III, the most abundant, lacked termination codons at their 3' ends. To determine if the type III transcripts were degraded by the recently described cytosolic messenger RNA degradation pathway for messages lacking termination codons, northern blot analysis was performed. However, the finding of similar levels of nuclear and cytoplasmic alpha-GalA mRNA in normal and patient lymphoblasts suggested that mRNA degradation did not result from either mutation. Expression of representative transcript types revealed differences in intracellular localization and/or protein stability and catalytic activity, with most mutant proteins being nonfunctional. Characterization of these 3' mutations identified a novel molecular mechanism causing classical Fabry disease.


Effects of Myeloperoxidase-Induced Oxidation on Antiatherogenic Functions of High-Density Lipoprotein.

  • Takahiro Kameda‎ et al.
  • Journal of lipids‎
  • 2015‎

High-density lipoprotein (HDL) has protective effects against the development of atherosclerosis; these effects include reverse cholesterol transport, antioxidant ability, and anti-inflammation. Myeloperoxidase (MPO) secreted by macrophages in atherosclerotic lesions generates tyrosyl radicals in apolipoprotein A-I (apoA-I) molecules, inducing the formation of apoA-I/apoA-II heterodimers through the tyrosine-tyrosine bond in HDL. Functional characterization of HDL oxidized by MPO could provide useful information about the significance of apoA-I/apoA-II heterodimers measurement. We investigated the effects of MPO-induced oxidation on the antiatherogenic functions of HDL as described above. The antioxidant ability of HDL, estimated as the effect on LDL oxidation induced by copper sulfate, was not significantly affected after MPO oxidation. HDL reduced THP-1 monocyte migration by suppressing the stimulation of human umbilical vein endothelial cells induced by lipopolysaccharide (LPS). MPO-oxidized HDL also showed inhibition of THP-1 chemotaxis, but the extent of inhibition was significantly attenuated compared to intact HDL. MPO treatment did not affect the cholesterol efflux capacity of HDL from [(3)H]-cholesterol-laden macrophages derived from THP-1 cells. The principal effect of MPO oxidation on the antiatherogenic potential of HDL would be the reduction of anti-inflammatory ability, suggesting that measurement of apoA-I/apoA-II heterodimers might be useful to estimate anti-inflammatory ability of HDL.


Single nucleotide variations in CLCN6 identified in patients with benign partial epilepsies in infancy and/or febrile seizures.

  • Toshiyuki Yamamoto‎ et al.
  • PloS one‎
  • 2015‎

Nucleotide alterations in the gene encoding proline-rich transmembrane protein 2 (PRRT2) have been identified in most patients with benign partial epilepsies in infancy (BPEI)/benign familial infantile epilepsy (BFIE). However, not all patients harbor these PRRT2 mutations, indicating the involvement of genes other than PRRT2. In this study, we performed whole exome sequencing analysis for a large family affected with PRRT2-unrelated BPEI. We identified a non-synonymous single nucleotide variation (SNV) in the voltage-sensitive chloride channel 6 gene (CLCN6). A cohort study of 48 BPEI patients without PRRT2 mutations revealed a different CLCN6 SNV in a patient, his sibling and his father who had a history of febrile seizures (FS) but not BPEI. Another study of 48 patients with FS identified an additional SNV in CLCN6. Chloride channels (CLCs) are involved in a multitude of physiologic processes and some members of the CLC family have been linked to inherited diseases. However, a phenotypic correlation has not been confirmed for CLCN6. Although we could not detect significant biological effects linked to the identified CLCN6 SNVs, further studies should investigate potential CLCN6 variants that may underlie the genetic susceptibility to convulsive disorders.


Deaths associated with pandemic (H1N1) 2009 among children, Japan, 2009-2010.

  • Akihisa Okumura‎ et al.
  • Emerging infectious diseases‎
  • 2011‎

To clarify the cause of deaths associated with pandemic (H1N1) 2009 among children in Japan, we retrospectively studied 41 patients <20 years of age who had died of pandemic (H1N1) 2009 through March 31, 2010. Data were collected through interviews with attending physicians and chart reviews. Median age of patients was 59 months; one third had a preexisting condition. Cause of death was categorized as unexpected cardiopulmonary arrest for 15 patients, encephalopathy for 15, and respiratory failure for 6. Preexisting respiratory or neurologic disorders were more frequent in patients with respiratory failure and less frequent in patients with unexpected cardiopulmonary arrest. The leading causes of death among children with pandemic (H1N1) 2009 in Japan were encephalopathy and unexpected cardiopulmonary arrest. Deaths associated with respiratory failure were infrequent and occurred primarily among children with preexisting conditions. Vaccine use and public education are necessary for reducing influenza-associated illness and death.


A recurrent KCNT1 mutation in two sporadic cases with malignant migrating partial seizures in infancy.

  • Atsushi Ishii‎ et al.
  • Gene‎
  • 2013‎

We performed analysis of KCNT1 in two unrelated patients with malignant migrating partial seizures in infancy. Both patients had intractable focal seizures since two months of age. Their seizures were characterized by a shift of epileptic focus during a single seizure and were resistant to most antiepileptic drugs but responded to vagus nerve stimulation in one and clorazepate in the other. Bidirectional sequencing for KCNT1 was analyzed by standard Sanger sequencing method. A de novo c.862G>A (p.Gly288Ser) missense mutation was identified at the pore region of KCNT1 channel in both patients, whereas all KCNT1 mutations in the previous reports were identified mostly in the intracellular C-terminal region. Computational analysis suggested possible changes in the molecular structure and the ion channel property induced by the Gly288Ser mutation. Because the G-to-A transition was located at CG dinucleotide sequences as previously reported for KCNT1 mutations, the recurrent occurrence of de novo KCNT1 mutations indicated the hot spots of these locations.


Autoantibodies against NCAM1 from patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice.

  • Hiroki Shiwaku‎ et al.
  • Cell reports. Medicine‎
  • 2022‎

From genetic and etiological studies, autoimmune mechanisms underlying schizophrenia are suspected; however, the details remain unclear. In this study, we describe autoantibodies against neural cell adhesion molecule (NCAM1) in patients with schizophrenia (5.4%, cell-based assay; 6.7%, ELISA) in a Japanese cohort (n = 223). Anti-NCAM1 autoantibody disrupts both NCAM1-NCAM1 and NCAM1-glial cell line-derived neurotrophic factor (GDNF) interactions. Furthermore, the anti-NCAM1 antibody purified from patients with schizophrenia interrupts NCAM1-Fyn interaction and inhibits phosphorylation of FAK, MEK1, and ERK1 when introduced into the cerebrospinal fluid of mice and also reduces the number of spines and synapses in frontal cortex. In addition, it induces schizophrenia-related behavior in mice, including deficient pre-pulse inhibition and cognitive impairment. In conclusion, anti-NCAM1 autoantibodies in patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. These antibodies may be a potential therapeutic target and serve as a biomarker to distinguish a small but treatable subgroup in heterogeneous patients with schizophrenia.


Newborn screening for Pompe disease in Japan.

  • Eri Oda‎ et al.
  • Molecular genetics and metabolism‎
  • 2011‎

Pompe disease is caused by a deficiency of acid alpha-glucosidase (GAA) that results in glycogen accumulation, primarily in muscle. Newborn screening (NBS) for Pompe disease has been initiated in Taiwan and is reportedly successful. However, the comparatively high frequency of pseudodeficiency allele makes NBS for Pompe disease complicated in Taiwan. To investigate the feasibility of NBS for Pompe disease in Japan, we obtained dried blood spots (DBSs) from 496 healthy Japanese controls, 29 Japanese patients with Pompe disease, and five obligate carriers, and assayed GAA activity under the following conditions: (1) total GAA measured at pH 3.8, (2) GAA measured at pH 3.8 in the presence of acarbose, and (3) neutral glucosidase activity (NAG) measured at pH 7.0 without acarbose. The % inhibition and NAG/GAA ratio were calculated. For screening, samples with GAA<8% of the normal mean, % inhibition>60%, and NAG/GAA ratio>30 were considered to be positive. Two false positive cases (0.3%) were found, one was a healthy homozygote of pseudodeficiency allele (c.1726G>A). The low false-positive rate suggests that NBS for Pompe disease is feasible in Japan.


Changes in cerebrospinal fluid biomarkers in human herpesvirus-6-associated acute encephalopathy/febrile seizures.

  • Naoyuki Tanuma‎ et al.
  • Mediators of inflammation‎
  • 2014‎

To determine the involvement of oxidative stress in the pathogenesis of acute encephalopathy associated with human herpesvirus-6 (HHV-6) infection, we measured the levels of oxidative stress markers 8-hydroxy-2'-deoxyguanosine (8-OHdG) and hexanoyl-lysine adduct (HEL), tau protein, and cytokines in cerebrospinal fluid (CSF) obtained from patients with HHV-6-associated acute encephalopathy (HHV-6 encephalopathy) (n = 16) and complex febrile seizures associated with HHV-6 (HHV-6 complex FS) (n = 10). We also examined changes in CSF-8OHdG and CSF-HEL levels in patients with HHV-6 encephalopathy before and after treatment with edaravone, a free radical scavenger. CSF-8-OHdG levels in HHV-6 encephalopathy and HHV-6 complex FS were significantly higher than in control subjects. In contrast, CSF-HEL levels showed no significant difference between groups. The levels of total tau protein in HHV-6 encephalopathy were significantly higher than in control subjects. In six patients with HHV-6 infection (5 encephalopathy and 1 febrile seizure), the CSF-8-OHdG levels of five patients decreased after edaravone treatment. Our results suggest that oxidative DNA damage is involved in acute encephalopathy associated with HHV-6 infection.


CARD8 is a negative regulator for NLRP3 inflammasome, but mutant NLRP3 in cryopyrin-associated periodic syndromes escapes the restriction.

  • Sayaka Ito‎ et al.
  • Arthritis research & therapy‎
  • 2014‎

NLRP3 plays a role in sensing various pathogen components or stresses in the innate immune system. Once activated, NLRP3 associates with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and procaspase-1 to form a large protein complex termed inflammasome. Although some investigators have proposed a model of NLRP3-inflammasome containing an adaptor protein caspase recruitment domain-containing protein 8 (CARD8), the role of this molecule remains obscure. This study aimed to clarify the interaction between CARD8 and wild-type NLRP3 as well as mutant forms of NLRP3 linked with cryopyrin-associated periodic syndromes (CAPS).


DNAJB6 myopathy in an Asian cohort and cytoplasmic/nuclear inclusions.

  • Takatoshi Sato‎ et al.
  • Neuromuscular disorders : NMD‎
  • 2013‎

DNAJB6, which encodes DnaJ homolog, subfamily B, member 6 (DNAJB6) was recently identified as a causative gene for limb-girdle muscular dystrophy type 1D (LGMD1D). DNAJB6 is a member of heat shock protein 40 and contains a J domain, G/F domain and C-terminal domain. Only three different mutations have been identified in 11 families. In this study, we identified seven Japanese individuals from four unrelated families who carried a DNAJB6 mutation. We found a novel p.Phe96Ile substitution and a previously reported p.Phe96Leu change in the G/F domain of DNAJB6. All affected individuals showed slowly progressive muscle weakness, mainly in their legs, and their muscle pathology showed cytoplasmic inclusions and rimmed vacuoles. Our immunohistochemical analysis detected cytoplasmic accumulations associated with chaperone-assisted selective autophagy together with intranuclear accumulations of DNAJB6 and heat shock 22-kD protein 8 (HSPB8). This is the first report of Asian patients with LGMD1D. Our new findings may contribute to understanding the pathological mechanisms of this myopathy.


Effect of a small molecule inhibitor of nuclear factor-kappaB nuclear translocation in a murine model of arthritis and cultured human synovial cells.

  • Kyoko Wakamatsu‎ et al.
  • Arthritis research & therapy‎
  • 2005‎

A small cell-permeable compound, dehydroxymethylepoxyquinomicin (DHMEQ), does not inhibit phosphorylation and degradation of IkappaB (inhibitor of nuclear factor-kappaB [NF-kappaB]) but selectively inhibits nuclear translocation of activated NF-kappaB. This study aimed to demonstrate the antiarthritic effect of this novel inhibitor of the NF-kappaB pathway in vivo in a murine arthritis model and in vitro in human synovial cells. Collagen-induced arthritis was induced in mice, and after onset of arthritis the mice were treated with DHMEQ (5 mg/kg body weight per day). Using fibroblast-like synoviocyte (FLS) cell lines established from patients with rheumatoid arthritis (RA), NF-kappaB activity was examined by electrophoretic mobility shift assays. The expression of molecules involved in RA pathogenesis was determined by RT-PCR, ELISA, and flow cytometry. The proliferative activity of the cells was estimated with tritiated thymidine incorporation. After 14 days of treatment with DHMEQ, mice with collagen-induced arthritis exhibited decreased severity of arthritis, based on the degree of paw swelling, the number of swollen joints, and radiographic and histopathologic scores, compared with the control mice treated with vehicle alone. In RA FLS stimulated with tumor necrosis factor-alpha, activities of NF-kappaB components p65 and p50 were inhibited by DHMEQ, leading to suppressed expression of the key inflammatory cytokine IL-6, CC chemokine ligand-2 and -5, matrix metalloproteinase-3, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1. The proliferative activity of the cells was also suppressed. This is the first demonstration of an inhibitor of NF-kappaB nuclear translocation exhibiting a therapeutic effect on established murine arthritis, and suppression of inflammatory mediators in FLS was thought to be among the mechanisms underlying such an effect.


NF-kappaB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor.

  • Tetsuo Kubota‎ et al.
  • Arthritis research & therapy‎
  • 2007‎

Inhibition of NF-kappaB is known to be effective in reducing both inflammation and bone destruction in animal models of arthritis. Our previous study demonstrated that a small cell-permeable NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses expression of proinflammatory cytokines and ameliorates mouse arthritis. It remained unclear, however, whether DHMEQ directly affects osteoclast precursor cells to suppress their differentiation to mature osteoclasts in vivo. The effect of DHMEQ on human osteoclastogenesis also remained elusive. In the present study, we therefore examined the effect of DHMEQ on osteoclastogenesis using a mouse collagen-induced arthritis model, and using culture systems of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis, and of osteoclast precursor cells from peripheral blood of healthy volunteers. DHMEQ significantly suppressed formation of osteoclasts in arthritic joints, and also suppressed expression of NFATc1 along the inner surfaces of bone lacunae and the eroded bone surface, while serum levels of soluble receptor activator of NF-kappaB ligand (RANKL), osteoprotegerin and macrophage colony-stimulating factor were not affected by the treatment. DHMEQ also did not suppress spontaneous expression of RANKL nor of macrophage colony-stimulating factor in culture of fibroblast-like synovial cells obtained from patients with rheumatoid arthritis. These results suggest that DHMEQ suppresses osteoclastogenesis in vivo, through downregulation of NFATc1 expression, without significantly affecting expression of upstream molecules of the RANKL/receptor activator of NF-kappaB/osteoprotegerin cascade, at least in our experimental condition. Furthermore, in the presence of RANKL and macrophage colony-stimulating factor, differentiation and activation of human osteoclasts were also suppressed by DHMEQ, suggesting the possibility of future application of NF-kappaB inhibitors to rheumatoid arthritis therapy.


The designed NF-κB inhibitor, DHMEQ, inhibits KISS1R-mediated invasion and increases drug-sensitivity in mouse plasmacytoma SP2/0 cells.

  • Yinzhi Lin‎ et al.
  • Experimental and therapeutic medicine‎
  • 2021‎

Plasmacytoma is one of the most difficult types of leukemia to treat, and it often invades the bone down to the marrow resulting in the development of multiple myeloma. NF-κB is often constitutively activated, and promotes metastasis and drug resistance in neoplastic cells. The present study assessed the cellular anticancer activity of an NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on mouse plasmacytoma SP2/0 cells. Cellular invasion was measured by Matrigel chamber assay, and apoptosis was assessed by detecting caspase-3 cleavage and by flow cytometric analysis with Annexin V. DHMEQ inhibited constitutively activated NF-κB at nontoxic concentrations. DHMEQ was also shown to inhibit cellular invasion of SP2/0 cells, as well as human myeloma KMS-11 and RPMI-8226 cells. The metastasis PCR array indicated that DHMEQ induced a decrease in KISS1 receptor (KISS1R) expression in SP2/0 cells. Knockdown of KISS1R by small interfering RNA suppressed cellular invasion, suggesting that KISS1R may serve an essential role in the invasion of SP2/0 cells. Furthermore, DHMEQ enhanced cytotoxicity of the anticancer agent melphalan in SP2/0 cells. Notably, DHMEQ inhibited the expression of NF-κB-dependent anti-apoptotic proteins, such as Bcl-XL, FLIP, and Bfl-1. In conclusion, inhibition of constitutively activated NF-κB by DHMEQ may be useful for future anti-metastatic and anticancer strategies for the treatment of plasmacytoma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: