Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 77 papers

A Top-Down Cortical Circuit for Accurate Sensory Perception.

  • Satoshi Manita‎ et al.
  • Neuron‎
  • 2015‎

A fundamental issue in cortical processing of sensory information is whether top-down control circuits from higher brain areas to primary sensory areas not only modulate but actively engage in perception. Here, we report the identification of a neural circuit for top-down control in the mouse somatosensory system. The circuit consisted of a long-range reciprocal projection between M2 secondary motor cortex and S1 primary somatosensory cortex. In vivo physiological recordings revealed that sensory stimulation induced sequential S1 to M2 followed by M2 to S1 neural activity. The top-down projection from M2 to S1 initiated dendritic spikes and persistent firing of S1 layer 5 (L5) neurons. Optogenetic inhibition of M2 input to S1 decreased L5 firing and the accurate perception of tactile surfaces. These findings demonstrate that recurrent input to sensory areas is essential for accurate perception and provide a physiological model for one type of top-down control circuit.


Chronic alterations in monoaminergic cells in the locus coeruleus in orexin neuron-ablated narcoleptic mice.

  • Natsuko Tsujino‎ et al.
  • PloS one‎
  • 2013‎

Narcolepsy patients often suffer from insomnia in addition to excessive daytime sleepiness. Narcoleptic animals also show behavioral instability characterized by frequent transitions between all vigilance states, exhibiting very short bouts of NREM sleep as well as wakefulness. The instability of wakefulness states in narcolepsy is thought to be due to deficiency of orexins, neuropeptides produced in the lateral hypothalamic neurons, which play a highly important role in maintaining wakefulness. However, the mechanism responsible for sleep instability in this disorder remains to be elucidated. Because firing of orexin neurons ceases during sleep in healthy animals, deficiency of orexins does not explain the abnormality of sleep. We hypothesized that chronic compensatory changes in the neurophysiologica activity of the locus coeruleus (LC) and dorsal raphe (DR) nucleus in response to the progressive loss of endogenous orexin tone underlie the pathological regulation of sleep/wake states. To evaluate this hypothesis, we examined firing patterns of serotonergic (5-HT) neurons and noradrenergic (NA) neurons in the brain stem, two important neuronal populations in the regulation of sleep/wakefulness states. We recorded single-unit activities of 5-HT neurons and NA neurons in the DR nucleus and LC of orexin neuron-ablated narcoleptic mice. We found that while the firing pattern of 5-HT neurons in narcoleptic mice was similar to that in wildtype mice, that of NA neurons was significantly different from that in wildtype mice. In narcoleptic mice, NA neurons showed a higher firing frequency during both wakefulness and NREM sleep as compared with wildtype mice. In vitro patch-clamp study of NA neurons of narcoleptic mice suggested a functional decrease of GABAergic input to these neurons. These alterations might play roles in the sleep abnormality in narcolepsy.


GABA(B) receptor-mediated modulation of hypocretin/orexin neurones in mouse hypothalamus.

  • Xinmin Xie‎ et al.
  • The Journal of physiology‎
  • 2006‎

Hypocretin/orexin (Hcrt) is a critical neurotransmitter for the maintenance of wakefulness and has been implicated in several other functions, including energy metabolism and reward. Using whole-cell patch-clamp recordings from transgenic mice in which enhanced green fluorescent protein was linked to the Hcrt promoter, we investigated GABAergic control of the Hcrt neurones in hypothalamic slices. Bath application of GABA or muscimol caused an early hyperpolarization mediated by Cl(-) and a late depolarization mediated by the efflux of bicarbonate. These GABA(A) receptor-mediated responses were blocked by picrotoxin and bicuculline. Under the GABA(A) blockade condition, GABA produced consistent hyperpolarization, decreased firing rate and input resistance. The selective GABA(B) agonist (R)-baclofen caused a similar response with an EC(50) of 7.1 mum. The effects of (R)-baclofen were blocked by the GABA(B) antagonist CGP 52432 but persisted in the presence of tetrodotoxin, suggesting direct postsynaptic effects. The existence of GABA(B) modulation was supported by GABA(B(1)) subunit immunoreactivity on Hcrt cells colabelled with antisera to the Hcrt-2 peptide. Furthermore, GABA(B) receptor activation inhibited the presynaptic release of both glutamate and GABA. (R)-Baclofen depressed the amplitude of evoked excitatory postsynaptic currents (EPSCs) and inhibitory synaptic currents (IPSCs), and also decreased the frequency of both spontaneous and miniature EPSCs and IPSCs with a modest effect on their amplitudes. These data suggest that GABA(B) receptors modulate Hcrt neuronal activity via both pre- and postsynaptic mechanisms, which may underlie the promotion of non-rapid eye movement sleep and have implications for the use of GABA(B) agonists in the treatment of substance addiction through direct interaction with the Hcrt system.


Parallel Arousal Pathways in the Lateral Hypothalamus.

  • Jaime E Heiss‎ et al.
  • eNeuro‎
  • 2018‎

Until recently, hypocretin (Hcrt) neurons were the only known wake-promoting neuronal population in the lateral hypothalamus (LH), but subpopulations of inhibitory neurons in this area and glutamatergic neurons in the nearby supramammillary nucleus (SuM) have recently been found that also promote wakefulness. We performed chemogenetic excitation of LH neurons in mice and observed increased wakefulness that lasted more than 4 h without unusual behavior or EEG anomalies. The increased wakefulness was similar in the presence or absence of the dual orexin receptor blocker almorexant (ALM). Analysis of hM3Dq transfection and c-FOS expression in LH inhibitory neurons and in the SuM failed to confirm that the increased wakefulness was due to these wake-promoting populations, although this possibility cannot be completely excluded. To evaluate the relationship to the Hcrt system, we repeated the study in Orexin-tTA mice in the presence or absence of dietary doxycycline (DOX), which enabled us to manipulate the percentage of Hcrt neurons that expressed hM3Dq. In DOX-fed mice, 18% of Hcrt neurons as well as many other LH neurons expressed hM3Dq; these mice showed a profound increase in wake after hM3Dq activation even in the presence of ALM. In mice switched to normal chow, 62% of Hcrt neurons expressed hM3Dq along with other LH cells; chemogenetic activation produced even more sustained arousal which could be reduced to previous levels by ALM treatment. Together, these results indicate an LH neuron population that promotes wakefulness through an Hcrt-independent pathway that can act synergistically with the Hcrt system to prolong arousal.


Involvement of orexin neurons in fasting- and central adenosine-induced hypothermia.

  • Takahiro Futatsuki‎ et al.
  • Scientific reports‎
  • 2018‎

We examined whether orexin neurons might play a protective role against fasting- and adenosine-induced hypothermia. We first measured body temperature (BT) in orexin neuron-ablated (ORX-AB) mice and wild-type (WT) controls during 24 hours of fasting. As expected, the magnitude of BT drop and the length of time suffering from hypothermia were greater in ORX-AB mice than in WT mice. Orexin neurons were active just before onset of hypothermia and during the recovery period as revealed by calcium imaging in vivo using G-CaMP. We next examined adenosine-induced hypothermia via an intracerebroventricular administration of an adenosine A1 receptor agonist, N6-cyclohexyladenosine (CHA), which induced hypothermia in both ORX-AB and WT mice. The dose of CHA required to initiate a hypothermic response in ORX-AB mice was more than 10 times larger than the dose for WT mice. Once hypothermia was established, the recovery was seemingly slower in ORX-AB mice. Activation of orexin neurons during the recovery phase was confirmed by immunohistochemistry for c-Fos. We propose that orexin neurons play dual roles (enhancer in the induction phase and compensator during the recovery phase) in adenosine-induced hypothermia and a protective/compensatory role in fasting-induced hypothermia.


Effect of ghrelin on the motor deficit caused by the ablation of nigrostriatal dopaminergic cells or the inhibition of striatal dopamine receptors.

  • Yukari Suda‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Ghrelin plays roles in a wide range of central functions by activating the growth hormone secretagogue receptor (GHSR). This receptor has recently been found in the substantia nigra (SN) to control dopamine (DA)-related physiological functions. The dysregulation of DA neurons in the SN pars compacta (SNc) and the consequent depletion of striatal DA are known to underlie the motor deficits observed in Parkinson's disease (PD). In the present study, we further investigated the role of the SN-ghrelin system in motor function under the stereotaxic injection of AAV-CMV-FLEX-diphtheria toxin A (DTA) into the SN of dopamine transporter (DAT)-Cre (DATSN::DTA) mice to expunge DA neurons of the SNc. First, we confirmed the dominant expression of GHSR1a, which is a functional GHSR, in tyrosine hydroxylase (TH)-positive DA neurons in the SNc of control mice. In DATSN::DTA mice, we clearly observed motor dysfunction using several behavioral tests. An immunohistochemical study revealed a dramatic loss of TH-positive DA neurons in the SNc and DAT-labeled axon terminals in the striatum, and an absence of mRNAs for TH and DAT in the SN of DATSN::DTA mice. The mRNA level of GHSR1a was drastically decreased in the SN of these mice. In normal mice, we also found the mRNA expression of GHSR1a within GABAergic neurons in the SN pars reticulata (SNr). Under these conditions, a single injection of ghrelin into the SN failed to improve the motor deficits caused by ablation of the nigrostriatal DA network using DATSN::DTA mice, whereas intra-SN injection of ghrelin suppressed the motor dysfunction caused by the administration of haloperidol, which is associated with the transient inhibition of DA transmission. These findings suggest that phasic activation of the SNc-ghrelin system could improve the dysregulation of nigrostriatal DA transmission related to the initial stage of PD, but not the motor deficits under the depletion of nigrostriatal DA. Although GHSRs are found in non-DA cells of the SNr, GHSRs on DA neurons in the SNc may play a crucial role in motor function.


Vulnerability to depressive behavior induced by overexpression of striatal Shati/Nat8l via the serotonergic neuronal pathway in mice.

  • Kyosuke Uno‎ et al.
  • Behavioural brain research‎
  • 2019‎

The number of patients with depressive disorders is increasing. However, the mechanism of depression onsets has not been completely revealed. We previously identified Shati/Nat8l, an N-acetyltransferase, in the brain using an animal model of psychosis. In this study, we revealed the involvement of Shati/Nat8l in the vulnerability to major depression. Shati/Nat8l mRNA was increased only in the striatum of mice, which were exposed to chronic social defeat stress. Shati/Nat8l-overexpressed mice showed impairment in social interaction and sucrose preference after the subthreshold social defeat (microdefeat) stress. These depression-like behaviors were restored by fluvoxamine and LY341495 injection prior to these tests. Furthermore, the intracerebral administration of only fluvoxamine, but not of LY341495, to the dorsal striatum and direct infusion of LY341495 to the dorsal raphe also rescued. Taken together, Shati/Nat8l in the striatum has an important role in the vulnerability to depression onsets by regulating the origin of serotonergic neuronal system via GABAergic projection neuron in the dorsal raphe from the dorsal striatum.


N-acetylaspartate availability is essential for juvenile survival on fat-free diet and determines metabolic health.

  • Dina C Hofer‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2019‎

N-acetylaspartate (NAA) is synthesized by aspartate N-acetyltransferase (gene: Nat8l) from acetyl-coenzyme A and aspartate. In the brain, NAA is considered an important energy metabolite for lipid synthesis. However, the role of NAA in peripheral tissues remained elusive. Therefore, we characterized the metabolic phenotype of knockout (ko) and adipose tissue-specific (ako) Nat8l-ko mice as well as NAA-supplemented mice on various diets. We identified an important role of NAA availability in the brain during adolescence, as 75% of Nat8l-ko mice died on fat-free diet (FFD) after weaning but could be rescued by NAA supplementation. In adult life, NAA deficiency promotes a beneficial metabolic phenotype, as Nat8l-ko and Nat8l-ako mice showed reduced body weight, increased energy expenditure, and improved glucose tolerance on chow, high-fat, and FFDs. Furthermore, Nat8l-deficient adipocytes exhibited increased mitochondrial respiration, ATP synthesis, and an induction of browning. Conversely, NAA-treated wild-type mice showed reduced adipocyte respiration and lipolysis and increased de novo lipogenesis, culminating in reduced energy expenditure, glucose tolerance, and insulin sensitivity. Mechanistically, our data point to a possible role of NAA as modulator of pancreatic insulin secretion and suggest NAA as a critical energy metabolite for adipocyte and whole-body energy homeostasis.-Hofer, D. C., Zirkovits, G., Pelzmann, H. J., Huber, K., Pessentheiner, A. R., Xia, W., Uno, K., Miyazaki, T., Kon, K., Tsuneki, H., Pendl, T., Al Zoughbi, W., Madreiter-Sokolowski, C. T., Trausinger, G., Abdellatif, M., Schoiswohl, G., Schreiber, R., Eisenberg, T., Magnes, C., Sedej, S., Eckhardt, M., Sasahara, M., Sasaoka, T., Nitta, A., Hoefler, G., Graier, W. F., Kratky, D., Auwerx, J., Bogner-Strauss, J. G. N-acetylaspartate availability is essential for juvenile survival on fat-free diet and determines metabolic health.


Oxytocin-Oxytocin Receptor Systems Facilitate Social Defeat Posture in Male Mice.

  • Naranbat Nasanbuyan‎ et al.
  • Endocrinology‎
  • 2018‎

Social stress has deteriorating effects on various psychiatric diseases. In animal models, exposure to socially dominant conspecifics (i.e., social defeat stress) evokes a species-specific defeat posture via unknown mechanisms. Oxytocin neurons have been shown to be activated by stressful stimuli and to have prosocial and anxiolytic actions. The roles of oxytocin during social defeat stress remain unclear. Expression of c-Fos, a marker of neuronal activation, in oxytocin neurons and in oxytocin receptor‒expressing neurons was investigated in mice. The projection of oxytocin neurons was examined with an anterograde viral tracer, which induces selective expression of membrane-targeted palmitoylated green fluorescent protein in oxytocin neurons. Defensive behaviors during double exposure to social defeat stress in oxytocin receptor‒deficient mice were analyzed. After social defeat stress, expression of c-Fos protein was increased in oxytocin neurons of the bed nucleus of the stria terminalis, supraoptic nucleus, and paraventricular hypothalamic nucleus. Expression of c-Fos protein was also increased in oxytocin receptor‒expressing neurons of brain regions, including the ventrolateral part of the ventromedial hypothalamus and ventrolateral periaqueductal gray. Projecting fibers from paraventricular hypothalamic oxytocin neurons were found in the ventrolateral part of the ventromedial hypothalamus and in the ventrolateral periaqueductal gray. Oxytocin receptor‒deficient mice showed reduced defeat posture during the second social defeat stress. These findings suggest that social defeat stress activates oxytocin-oxytocin receptor systems, and the findings are consistent with the view that activation of the oxytocin receptor in brain regions, including the ventrolateral part of the ventromedial hypothalamus and the ventrolateral periaqueductal gray, facilitates social defeat posture.


Serotonergic projections to the orbitofrontal and medial prefrontal cortices differentially modulate waiting for future rewards.

  • Katsuhiko Miyazaki‎ et al.
  • Science advances‎
  • 2020‎

Optogenetic activation of serotonergic neurons in the dorsal raphe nucleus (DRN) enhances patience when waiting for future rewards, and this effect is maximized by both high probability and high timing uncertainty of reward. Here, we explored which serotonin projection areas contribute to these effects using optogenetic axon terminal stimulation. We found that serotonin stimulation in the orbitofrontal cortex (OFC) is nearly as effective as that in the DRN for promoting waiting, while in the nucleus accumbens, it does not promote waiting. We also found that serotonin stimulation in the medial prefrontal cortex (mPFC) promotes waiting only when the timing of future rewards is uncertain. Our Bayesian decision model of waiting assumed that the OFC and mPFC calculate the posterior probability of reward delivery separately. These results suggest that serotonin in the mPFC affects evaluation of time committed, while serotonin in the OFC is responsible for overall valuation of delayed rewards.


Acute restraint stress augments the rewarding memory of cocaine through activation of α1 adrenoceptors in the medial prefrontal cortex of mice.

  • Shintaro Wada‎ et al.
  • Neuropharmacology‎
  • 2020‎

Stress augments the rewarding memory of cocaine, which plays a critical role in inducing cocaine craving. However, the neurobiological mechanisms underlying the enhancing effect of stress remain unclear. Here, we show that noradrenaline (NA) transmission in the medial prefrontal cortex (mPFC) mediates stress-induced enhancement of cocaine craving. When mice were exposed to acute restraint stress immediately before the posttest session of the cocaine-induced conditioned place preference (CPP) paradigm, the CPP score was significantly higher than that in non-stressed mice. Because extracellular NA levels have been reported to be increased in the mPFC during stress exposure, we assessed the effects of NA on mPFC layer 5 pyramidal cell activity. Whole-cell recordings revealed that NA application induces depolarization and a concomitant increase in spontaneous excitatory postsynaptic currents (sEPSCs). The NA effects were inhibited by terazosin, but not by yohimbine or timolol, and the sEPSC increase was not observed in the presence of tetrodotoxin, suggesting the involvement of postsynaptic α1, but not α2 or β, adrenoceptors in the NA effects. Additionally, intra-mPFC injection of terazosin before stress exposure attenuated the stress-induced increase in cocaine CPP. Intra-mPFC injection of phenylephrine, an α1 adrenoceptor agonist, before the posttest session without stress exposure significantly enhanced cocaine CPP. Furthermore, chemogenetic suppression of mPFC pyramidal cells with inhibitory DREADD (designer receptors exclusively activated by designer drugs) also suppressed the stress-induced CPP enhancement. These findings suggest that the stress-induced increase in NA transmission activates mPFC pyramidal cells via α1 adrenoceptor stimulation, leading to enhancement of cocaine craving-related behavior.


Calcium Transient Dynamics of Neural Ensembles in the Primary Motor Cortex of Naturally Behaving Monkeys.

  • Takahiro Kondo‎ et al.
  • Cell reports‎
  • 2018‎

To understand brain circuits of cognitive behaviors under natural conditions, we developed techniques for imaging neuronal activities from large neuronal populations in the deep layer cortex of the naturally behaving common marmoset. Animals retrieved food pellets or climbed ladders as a miniature fluorescence microscope monitored hundreds of calcium indicator-expressing cortical neurons in the right primary motor cortex. This technique, which can be adapted to other brain regions, can deepen our understanding of brain circuits by facilitating longitudinal population analyses of neuronal representation associated with cognitive naturalistic behaviors and their pathophysiological processes.


Remote control of neural function by X-ray-induced scintillation.

  • Takanori Matsubara‎ et al.
  • Nature communications‎
  • 2021‎

Scintillators emit visible luminescence when irradiated with X-rays. Given the unlimited tissue penetration of X-rays, the employment of scintillators could enable remote optogenetic control of neural functions at any depth of the brain. Here we show that a yellow-emitting inorganic scintillator, Ce-doped Gd3(Al,Ga)5O12 (Ce:GAGG), can effectively activate red-shifted excitatory and inhibitory opsins, ChRmine and GtACR1, respectively. Using injectable Ce:GAGG microparticles, we successfully activated and inhibited midbrain dopamine neurons in freely moving mice by X-ray irradiation, producing bidirectional modulation of place preference behavior. Ce:GAGG microparticles are non-cytotoxic and biocompatible, allowing for chronic implantation. Pulsed X-ray irradiation at a clinical dose level is sufficient to elicit behavioral changes without reducing the number of radiosensitive cells in the brain and bone marrow. Thus, scintillator-mediated optogenetics enables minimally invasive, wireless control of cellular functions at any tissue depth in living animals, expanding X-ray applications to functional studies of biology and medicine.


Involvement of MCH-oxytocin neural relay within the hypothalamus in murine nursing behavior.

  • Yoko Kato‎ et al.
  • Scientific reports‎
  • 2021‎

Multiple sequential actions, performed during parental behaviors, are essential elements of reproduction in mammalian species. We showed that neurons expressing melanin concentrating hormone (MCH) in the lateral hypothalamic area (LHA) are more active in rodents of both sexes when exhibiting parental nursing behavior. Genetic ablation of the LHA-MCH neurons impaired maternal nursing. The post-birth survival rate was lower in pups born to female mice with congenitally ablated MCH neurons under control of tet-off system, exhibiting reduced crouching behavior. Virgin female and male mice with ablated MCH neurons were less interested in pups and maternal care. Chemogenetic and optogenetic stimulation of LHA-MCH neurons induced parental nursing in virgin female and male mice. LHA-MCH GABAergic neurons project fibres to the paraventricular hypothalamic nucleus (PVN) neurons. Optogenetic stimulation of PVN induces nursing crouching behavior along with increasing plasma oxytocin levels. The hypothalamic MCH neural relays play important functional roles in parental nursing behavior in female and male mice.


The Impacts of Age and Sex in a Mouse Model of Childhood Narcolepsy.

  • Alissa A Coffey‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Narcolepsy is a sleep disorder caused by selective death of the orexin neurons that often begins in childhood. Orexin neuron loss disinhibits REM sleep during the active period and produces cataplexy, episodes of paralysis during wakefulness. Cataplexy is often worse when narcolepsy develops in children compared to adults, but the reason for this difference remains unknown. We used orexin-tTA; TetO DTA mice to model narcolepsy at different ages. When doxycycline is removed from the diet, the orexin neurons of these mice express diphtheria toxin A and die within 2-3 weeks. We removed doxycycline at 4 weeks (young-onset) or 14 weeks (adult-onset) of age in male and female mice. We implanted electroencephalography (EEG) and electromyography (EMG) electrodes for sleep recordings two weeks later and then recorded EEG/EMG/video for 24 h at 3 and 13 weeks after removal of doxycycline. Age-matched controls had access to doxycycline diet for the entire experiment. Three weeks after doxycycline removal, both young-onset and adult-onset mice developed severe cataplexy and the sleep-wake fragmentation characteristic of narcolepsy. Cataplexy and maintenance of wake were no worse in young-onset compared to adult-onset mice, but female mice had more bouts of cataplexy than males. Orexin neuron loss was similarly rapid in both young- and adult-onset mice. As age of orexin neuron loss does not impact the severity of narcolepsy symptoms in mice, the worse symptoms in children with narcolepsy may be due to more rapid orexin neuron loss than in adults.


Activity of putative orexin neurons during cataplexy.

  • Shi Zhou‎ et al.
  • Molecular brain‎
  • 2022‎

It is unclear why orexin-deficient animals, but not wild-type mice, show cataplexy. The current hypothesis predicts simultaneous excitation of cataplexy-inhibiting orexin neurons and cataplexy-inducing amygdala neurons. To test this hypothesis, we measured the activity of putative orexin neurons in orexin-knockout mice during cataplexy episodes using fiber photometry. We created two animal models of orexin-knockout mice with a GCaMP6 fluorescent indicator expressed in putative orexin neurons. We first prepared orexin-knockout mice crossed with transgenic mice carrying a tetracycline-controlled transactivator transgene under the control of the orexin promoter. TetO-GCaMP6 was then introduced into mice via an adeno-associated virus injection or natural crossing. The resulting two models showed restricted expression of GCaMP6 in the hypothalamus, where orexin neurons should be located, and showed excitation to an intruder stress that was similar to that observed in orexin-intact mice in our previous study. The activity of these putative orexin neurons increased immediately before the onset of cataplexy-like behavior but decreased (approximately - 20% of the baseline) during the cataplexy-like episode. We propose that the activity of orexin neurons during cataplexy is moderately inhibited by an unknown mechanism. The absence of cataplexy in wild-type mice may be explained by basal or residual activity-induced orexin release, and emotional stimulus-induced counter activation of orexin neurons may not be necessary. This study will serve as a basis for better treatment of cataplexy in narcolepsy patients.


Conditional Knockout of Bmal1 in Corticotropin-Releasing Factor Neurons Does Not Alter Sleep-Wake Rhythm in Mice.

  • Chi Jung Hung‎ et al.
  • Frontiers in neuroscience‎
  • 2021‎

Sleep and wakefulness are regulated by both the homeostatic mechanism and circadian clock. In mammals, the central circadian clock, the suprachiasmatic nucleus, in the hypothalamus plays a crucial role in the timing of physiology and behavior. Recently, we found that the circadian regulation of wakefulness was transmitted via corticotropin-releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus to orexin neurons in the lateral hypothalamus. However, it is still unclear how the molecular clock in the CRF neurons contributes to the regulation of sleep and wakefulness. In the present study, we established CRF neuron-specific Bmal1-deficient mice and measured locomotor activity or electroencephalography and electromyography. We found that these mice showed normal circadian locomotor activity rhythms in both light-dark cycle and constant darkness. Furthermore, they showed normal daily patterns of sleep and wakefulness. These results suggest that Bmal1 in CRF neurons has no effect on either circadian locomotor activity or sleep and wakefulness.


Hypothalamic orexin prevents non-alcoholic steatohepatitis and hepatocellular carcinoma in obesity.

  • Hiroshi Tsuneki‎ et al.
  • Cell reports‎
  • 2022‎

Non-alcoholic steatohepatitis (NASH) occasionally occurs under obesity; however, factors modulating the natural history of fatty liver disease remain unknown. Since hypothalamic orexin that regulates physical activity and autonomic balance prevents obesity, we investigate its role in NASH development. Male orexin-deficient mice fed a high-fat diet (HFD) show severe obesity and progression of NASH with fibrosis in the liver. Hepatic fibrosis also develops in ovariectomized orexin-deficient females fed an HFD but not ovariectomized wild-type controls. Moreover, long-term HFD feeding causes hepatocellular carcinoma (HCC) in orexin-deficient mice. Intracerebroventricular injection of orexin A or pharmacogenetic activation of orexin neurons acutely activates hepatic mTOR-sXbp1 pathway to prevent endoplasmic reticulum (ER) stress, a NASH-causing factor. Daily supplementation of orexin A attenuates hepatic ER stress and inflammation in orexin-deficient mice fed an HFD, and autonomic ganglionic blocker suppresses the orexin actions. These results suggest that hypothalamic orexin is an essential factor for preventing NASH and associated HCC under obesity.


Dorsomedial and preoptic hypothalamic circuits control torpor.

  • Hiroshi Yamaguchi‎ et al.
  • Current biology : CB‎
  • 2023‎

Endotherms can survive low temperatures and food shortage by actively entering a hypometabolic state known as torpor. Although the decrease in metabolic rate and body temperature (Tb) during torpor is controlled by the brain, the specific neural circuits underlying these processes have not been comprehensively elucidated. In this study, we identify the neural circuits involved in torpor regulation by combining whole-brain mapping of torpor-activated neurons, cell-type-specific manipulation of neural activity, and viral tracing-based circuit mapping. We find that Trpm2-positive neurons in the preoptic area and Vgat-positive neurons in the dorsal medial hypothalamus are activated during torpor. Genetic silencing shows that the activity of either cell type is necessary to enter the torpor state. Finally, we show that these cells receive projections from the arcuate and suprachiasmatic nucleus and send projections to brain regions involved in thermoregulation. Our results demonstrate an essential role of hypothalamic neurons in the regulation of Tb and metabolic rate during torpor and identify critical nodes of the torpor regulatory network.


Near-infrared (NIR) up-conversion optogenetics.

  • Shoko Hososhima‎ et al.
  • Scientific reports‎
  • 2015‎

Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650-1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called 'imaging window'. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: