Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury.

  • Michiko Sekine‎ et al.
  • Transgenic research‎
  • 2012‎

The proximal straight tubule (S3 segment) of the kidney is highly susceptible to ischemia and toxic insults but has a remarkable capacity to repair its structure and function. In response to such injuries, complex processes take place to regenerate the epithelial cells of the S3 segment; however, the precise molecular mechanisms of this regeneration are still being investigated. By applying the "toxin receptor mediated cell knockout" method under the control of the S3 segment-specific promoter/enhancer, Gsl5, which drives core 2 β-1,6-N-acetylglucosaminyltransferase gene expression, we established a transgenic mouse line expressing the human diphtheria toxin (DT) receptor only in the S3 segment. The administration of DT to these transgenic mice caused the selective ablation of S3 segment cells in a dose-dependent manner, and transgenic mice exhibited polyuria containing serum albumin and subsequently developed oliguria. An increase in the concentration of blood urea nitrogen was also observed, and the peak BUN levels occurred 3-7 days after DT administration. Histological analysis revealed that the most severe injury occurred in the S3 segments of the proximal tubule, in which tubular cells were exfoliated into the tubular lumen. In addition, aquaporin 7, which is localized exclusively to the S3 segment, was diminished. These results indicate that this transgenic mouse can suffer acute kidney injury (AKI) caused by S3 segment-specific damage after DT administration. This transgenic line offers an excellent model to uncover the mechanisms of AKI and its rapid recovery.


Enzyme-free release of adhered cells from standard culture dishes using intermittent ultrasonic traveling waves.

  • Yuta Kurashina‎ et al.
  • Communications biology‎
  • 2019‎

Cell detachment is essential in culturing adherent cells. Trypsinization is the most popular detachment technique, even though it reduces viability due to the damage to the membrane and extracellular matrix. Avoiding such damage would improve cell culture efficiency. Here we propose an enzyme-free cell detachment method that employs the acoustic pressure, sloshing in serum-free medium from intermittent traveling wave. This method detaches 96.2% of the cells, and increases its transfer yield to 130% of conventional methods for 48 h, compared to the number of cells detached by trypsinization. We show the elimination of trypsinization reduces cell damage, improving the survival of the detached cells. Acoustic pressure applied to the cells and media sloshing from the intermittent traveling wave were identified as the most important factors leading to cell detachment. This proposed method will improve biopharmaceutical production by expediting the amplification of tissue-cultured cells through a more efficient transfer process.


Auto/paracrine factors and early Wnt inhibition promote cardiomyocyte differentiation from human induced pluripotent stem cells at initial low cell density.

  • Minh Nguyen Tuyet Le‎ et al.
  • Scientific reports‎
  • 2021‎

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) have received increasing attention for their clinical use. Many protocols induce cardiomyocytes at an initial high cell density (confluence) to utilize cell density effects as hidden factors for cardiomyocyte differentiation. Previously, we established a protocol to induce hiPSC differentiation into cardiomyocytes using a defined culture medium and an initial low cell density (1% confluence) to minimize the hidden factors. Here, we investigated the key factors promoting cardiomyocyte differentiation at an initial low cell density to clarify the effects of cell density. Co-culture of hiPSCs at an initial low cell density with those at an initial high cell density showed that signals secreted from cells (auto/paracrine factors) and not cell-cell contact signals, played an important role in cardiomyocyte differentiation. Moreover, although cultures with initial low cell density showed higher expression of anti-cardiac mesoderm genes, earlier treatment with a Wnt production inhibitor efficiently suppressed the anti-cardiac mesoderm gene expression and promoted cardiomyocyte differentiation by up to 80% at an initial low cell density. These results suggest that the main effect of cell density on cardiomyocyte differentiation is inhibition of Wnt signaling at the early stage of induction, through auto/paracrine factors.


Enzyme-free passage of human pluripotent stem cells by controlling divalent cations.

  • Kiyoshi Ohnuma‎ et al.
  • Scientific reports‎
  • 2014‎

Enzymes used for passaging human pluripotent stem cells (hPSCs) digest cell surface proteins, resulting in cell damage. Moreover, cell dissociation using divalent cation-free solutions causes apoptosis. Here we report that Mg(2+) and Ca(2+) control cell-fibronectin and cell-cell binding of hPSCs, respectively, under feeder- and serum-free culture conditions without enzyme. The hPSCs were detached from fibronectin-, vitronectin- or laminin-coated dishes in low concentrations of Mg(2+) and remained as large colonies in high concentrations of Ca(2+). Using enzyme-free solutions containing Ca(2+) without Mg(2+), we successfully passaged hPSCs as large cell clumps that showed less damage than cells passaged using a divalent cation-free solution or dispase. Under the same conditions, the undifferentiated and early-differentiated cells could also be harvested as a cell sheet without being split off. Our enzyme-free passage of hPSCs under a serum- and feeder-free culture condition reduces cell damage and facilitates easier and safer cultures of hPSCs.


Slow diffusion on the monolayer culture enhances auto/paracrine effects of Noggin in differentiation of human iPS cells induced by BMP.

  • Eri Nakatani‎ et al.
  • Biochemistry and biophysics reports‎
  • 2022‎

Auto/paracrine factors secreted from cells affect differentiation of human pluripotent stem cells (hPSCs). However, the molecular mechanisms underlying the role of secreted factors are not well known. We previously showed that pattern formation in hPSCs induced by BMP4 could be reproduced by a simple reaction-diffusion of BMP and Noggin, a cell-secreted BMP4 inhibitor. However, the amount of Noggin secreted is unknown. In this study, we measured the concentration of Noggin secreted during the differentiation of hPSCs induced by BMP4. The Noggin concentration in the supernatant before and after differentiation was constant at approximately 0.69 ng/mL, which is approximately 50-200 times less than expected in the model. To explain the difference between the experiment and model, we assumed that macromolecules such as heparan sulfate proteoglycan on the cell surface act as a diffusion barrier structure, where the diffusion slows down to 1/400. The model with the diffusion barrier structure reduced the Noggin concentration required to suppress differentiation in the static culture model. The model also qualitatively reproduced the pattern formation, in which only the upstream but not the downstream hPSCs were differentiated in a one-directional perfusion culture chamber, with a small change in the amount of secreted Noggin resulting in a large change in the differentiation position. These results suggest that the diffusion barrier on the cell surface might enhance the auto/paracrine effects on monolayer hPSC culture.


Thalidomide affects limb formation and multiple myeloma related genes in human induced pluripotent stem cells and their mesoderm differentiation.

  • Maho Shimizu‎ et al.
  • Biochemistry and biophysics reports‎
  • 2021‎

Although thalidomide is highly teratogenic, it has been prescribed for treating multiple myeloma and Hansen's disease. However, its mechanism of action is not fully understood. Here, we employed a reverse transcription quantitative PCR array to measure the expression of 84 genes in human induced pluripotent stem cells (hiPSCs) and their mesodermal differentiation. Thalidomide altered the expression of undifferentiated marker genes in both cell types. Thalidomide affected more genes in the mesoderm than in the hiPSCs. Ectoderm genes were upregulated but mesendoderm genes were downregulated by thalidomide during mesoderm induction, suggesting that thalidomide altered mesoderm differentiation. We found that FABP7 (fatty acid binding protein 7) was dramatically downregulated in the hiPSCs. FABP is related to retinoic acid, which is important signaling for limb formation. Moreover, thalidomide altered the expression of the genes involved in TGF-β signaling, limb formation, and multiple myeloma, which are related to thalidomide-induced malformations and medication. In summary, iPSCs can serve as useful tools to elucidate the mechanisms underlying thalidomide malformations in vitro.


Random migration of induced pluripotent stem cell-derived human gastrulation-stage mesendoderm.

  • Yuta Yamamoto‎ et al.
  • PloS one‎
  • 2018‎

Gastrulation is the initial systematic deformation of the embryo to form germ layers, which is characterized by the placement of appropriate cells in their destined locations. Thus, gastrulation, which occurs at the beginning of the second month of pregnancy, is a critical stage in human body formation. Although histological analyses indicate that human gastrulation is similar to that of other amniotes (birds and mammals), much of human gastrulation dynamics remain unresolved due to ethical and technical limitations. We used human induced pluripotent stem cells (hiPSCs) to study the migration of mesendodermal cells through the primitive streak to form discoidal germ layers during gastrulation. Immunostaining results showed that hiPSCs differentiated into mesendodermal cells and that epithelial-mesenchymal transition occurred through the activation of the Activin/Nodal and Wnt/beta-catenin pathways. Single-cell time-lapse imaging of cells adhered to cover glass showed that mesendodermal differentiation resulted in the dissociation of cells and an increase in their migration speed, thus confirming the occurrence of epithelial-mesenchymal transition. These results suggest that mesendodermal cells derived from hiPSCs may be used as a model system for studying migration during human gastrulation in vitro. Using random walk analysis, we found that random migration occurred for both undifferentiated hiPSCs and differentiated mesendodermal cells. Two-dimensional random walk simulation showed that homogeneous dissociation of particles may form a discoidal layer, suggesting that random migration might be suitable to effectively disperse cells homogeneously from the primitive streak to form discoidal germ layers during human gastrulation.


Imbalance in fatty-acid-chain length of gangliosides triggers Alzheimer amyloid deposition in the precuneus.

  • Naoto Oikawa‎ et al.
  • PloS one‎
  • 2015‎

Amyloid deposition, a crucial event of Alzheimer's disease (AD), emerges in distinct brain regions. A key question is what triggers the assembly of the monomeric amyloid ß-protein (Aß) into fibrils in the regions. On the basis of our previous findings that gangliosides facilitate the initiation of Aß assembly at presynaptic neuritic terminals, we investigated how lipids, including gangliosides, cholesterol and sphingomyelin, extracted from synaptic plasma membranes (SPMs) isolated from autopsy brains were involved in the Aß assembly. We focused on two regions of the cerebral cortex; precuneus and calcarine cortex, one of the most vulnerable and one of the most resistant regions to amyloid deposition, respectively. Here, we show that lipids extracted from SPMs isolated from the amyloid-bearing precuneus, but neither the amyloid-free precuneus nor the calcarine cortex, markedly accelerate the Aß assembly in vitro. Through liquid chromatography-mass spectrometry of the lipids, we identified an increase in the ratio of the level of GD1b-ganglioside containing C20:0 fatty acid to that containing C18:0 as a cause of the enhanced Aß assembly in the precuneus. Our results suggest that the local glycolipid environment play a critical role in the initiation of Alzheimer amyloid deposition.


N-Glycoform-dependent interactions of megalin with its ligands.

  • Makoto Hirano‎ et al.
  • Biochimica et biophysica acta. General subjects‎
  • 2017‎

Megalin is a 600-kDa single-spanning transmembrane glycoprotein and functions as an endocytic receptor, distributed not only in the kidney but also in other tissues. Structurally and functionally distinct ligands for megalin have been identified. Megalin has 30 potential N-glycosylation sites in its extracellular domain. We found that megalin interacts with its ligands in a glycoform-dependent manner.


Imaging-cytometry revealed spatial heterogeneities of marker expression in undifferentiated human pluripotent stem cells.

  • Mika Suga‎ et al.
  • In vitro cellular & developmental biology. Animal‎
  • 2017‎

Human pluripotent stem cells (hPSCs) provide a good model system for studying human development and are expected as a source for both cell-based medical and pharmaceutical research application. However, stable maintenance of undifferentiated hPSCs is yet challenging, and thus routine characterization is required. Flow-cytometry is one of the popular quantitative characterization tools for hPSCs, but it has drawback of spatial information loss of the cells in the culture. Here, we have applied a two-dimensional imaging cytometry that examines undifferentiated state of hPSCs to analyze localization and morphological information of immunopositive cells in the culture. The whole images of cells in a culture vessel were acquired and analyzed by an image analyzer, IN Cell Analyzer 2000, and determined staining intensity of the cells with their positional information. We have compared the expression of five hPSC-markers in four hPSC lines using the two-dimensional imaging cytometry and flow cytometry. The results showed that immunopositive ratios analyzed by the imaging cytometry had good correlation with those by the flow cytometry. Furthermore, the imaging cytometry revealed spatially heterogenic expression of hPSC-markers in undifferentiated hPSCs. Imaging cytometry is capable of reflecting minute aberrance without losing spatial and morphological information of the cells. It would be a powerful, useful, and time-efficient tool for characterizing hPSC colonies.


Self-enhancement of hepatitis C virus replication by promotion of specific sphingolipid biosynthesis.

  • Yuichi Hirata‎ et al.
  • PLoS pathogens‎
  • 2012‎

Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.


Induction of ganglioside synthesis in Drosophila brain accelerates assembly of amyloid β protein.

  • Yasutoyo Yamasaki‎ et al.
  • Scientific reports‎
  • 2018‎

The assembly and deposition of amyloid β protein (Aβ) is a fundamental event during the early stages of Alzheimer's disease (AD) and cerebral amyloid angiopathy. A growing body of evidence indicates that gangliosides form a pathological platform for the generation of ganglioside-bound Aβ, which facilitates the assembly of soluble Aβs; however, the molecular mechanisms underlying the binding of Aβ to gangliosides in the brain remain unclear due to the lack of an in vivo system that may address this issue. In insects, including the fruit fly Drosophila melanogaster, gangliosides are not intrinsically present at a detectable level. We herein demonstrate that ganglioside expression is inducible in Drosophila via the expression of transgenes of ganglioside synthesis enzymes and the feeding of exogenous sialic acid, and also that the induction of ganglioside synthesis significantly accelerates Aβ assembly in vivo. Our results support the hypothesis that gangliosides are responsible for Aβ assembly in vivo and also provide an opportunity to develop a valuable model for basic research as well as a therapeutic strategy for AD.


Hantavirus pulmonary syndrome, central plateau, southeastern, and southern Brazil.

  • Luiz T M Figueiredo‎ et al.
  • Emerging infectious diseases‎
  • 2009‎

Hantavirus pulmonary syndrome (HPS) is an increasing health problem in Brazil because of encroachment of sprawling urban, agricultural, and cattle-raising areas into habitats of subfamily Sigmodontinae rodents, which serve as hantavirus reservoirs. From 1993 through June 2007, a total of 884 cases of HPS were reported in Brazil (case-fatality rate 39%). To better understand this emerging disease, we collected 89 human serum samples and 68 rodent lung samples containing antibodies to hantavirus from a 2,500-km-wide area in Brazil. RNA was isolated from human samples and rodent tissues and subjected to reverse transcription-PCR. Partial sequences of nucleocapsid protein and glycoprotein genes from 22 human and 16 rodent sources indicated only Araraquara virus and Juquitiba virus lineages. The case-fatality rate of HPS was higher in the area with Araraquara virus. This virus, which may be the most virulent hantavirus in Brazil, was associated with areas that have had greater anthropogenic changes.


Mushroom acidic glycosphingolipid induction of cytokine secretion from murine T cells and proliferation of NK1.1 alpha/beta TCR-double positive cells in vitro.

  • Hirofumi Nozaki‎ et al.
  • Biochemical and biophysical research communications‎
  • 2008‎

Interferon (IFN)-gamma and interleukin (IL)-4 regulate many types of immune responses. Here we report that acidic glycosphingolipids (AGLs) of Hypsizigus marmoreus and Pleurotus eryngii induced secretion of IFN- gamma and IL-4 from T cells in a CD11c-positive cell-dependent manner similar to that of alpha-galactosylceramide (alpha-GalCer) and isoglobotriaosylceramide (iGb3), although activated T cells by AGLs showed less secretion of cytokine than those activated by alpha-GalCer. In addition, stimulation of these mushroom AGLs induced proliferation of NK1.1 alpha/beta TCR-double positive cells in splenocytes. Administration of a mixture of alpha-GalCer and AGLs affected the stimulation of alpha-GalCer and generally induced a subtle Th1 bias for splenocytes but induced an extreme Th2 bias for thymocytes. These results suggested that edible mushroom AGLs contribute to immunomodulation.


Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity.

  • Hirotaka Kanoh‎ et al.
  • The EMBO journal‎
  • 2020‎

Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long-chain (LCFA) and very-long-chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA-GM3 increase significantly in metabolic disorders, while LCFA-GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA-GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4-mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA-GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA-GM3 and unsaturated VLCFA-GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand-molecular docking analysis supports that VLCFA-GM3 and LCFA-GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA-GM3 is a risk factor for TLR4-mediated disease progression.


Detachment of cell sheets from clinically ubiquitous cell culture vessels by ultrasonic vibration.

  • Chikahiro Imashiro‎ et al.
  • Scientific reports‎
  • 2020‎

Proteinases that digest the extracellular matrix are usually used to harvest cells from culture vessels in a general culture process, which lowers the initial adhesion rate in regenerative medicine. Cell sheet engineering is one of the most important technologies in this field, especially for transplantation, because fabricated cell sheets have rich extracellular matrixes providing strong initial adhesion. Current cell sheet fabrication relies on temperature-responsive polymer-coated dishes. Cells are cultured on such specialized dishes and subjected to low temperature. Thus, we developed a simple but versatile cell sheet fabrication method using ubiquitous culture dishes/flasks without any coating or temperature modulation. Confluent mouse myoblasts (C2C12 cell line) were exposed to ultrasonic vibration from underneath and detached as cell sheets from entire culture surfaces. Because of the absence of low temperature, cell metabolism was statically increased compared with the conventional method. Furthermore, viability, morphology, protein expression, and mRNA expression were normal. These analyses indicated no side effects of ultrasonic vibration exposure. Therefore, this novel method may become the standard for cell sheet fabrication. Our method can be easily conducted following a general culture procedure with a typical dish/flask, making cell sheets more accessible to medical experts.


Sorting of cells of the same size, shape, and cell cycle stage for a single cell level assay without staining.

  • Kiyoshi Ohnuma‎ et al.
  • BMC cell biology‎
  • 2006‎

Single-cell level studies are being used increasingly to measure cell properties not directly observable in a cell population. High-performance data acquisition systems for such studies have, by necessity, developed in synchrony. However, improvements in sample purification techniques are also required to reveal new phenomena. Here we assessed a cell sorter as a sample-pretreatment tool for a single-cell level assay. A cell sorter is routinely used for selecting one type of cells from a heterogeneous mixture of cells using specific fluorescence labels. In this case, we wanted to select cells of exactly the same size, shape, and cell-cycle stage from a population, without using a specific fluorescence label.


Identifying rodent hantavirus reservoirs, Brazil.

  • Akemi Suzuki‎ et al.
  • Emerging infectious diseases‎
  • 2004‎

We describe the genetic analysis of samples from hantavirus pulmonary syndrome (HPS) patients from southern and southeastern states of Brazil and rodents captured at the presumed site of infection of these patients. A total of 65 samples that were antibody-positive for Sin Nombre or Laguna Negra virus by enzyme-linked immunosorbent assay were processed by nested reverse transcription-polymerase chain reaction (RT-PCR) by using several primer combinations in the M and S genome segments. PCR products were amplified and sequenced from samples from 11 HPS patient and 7 rodent samples. Phylogenetic analysis of nucleotide sequence differences showed the cocirculation of Araraquara and Juquitiba-like viruses, previously characterized from humans. Our genetic data indicate that Araraquara virus is associated with Bolomys lasiurus (hairy-tailed Bolo mouse) and the Juquitiba-like virus is associated with Oligoryzomys nigripes (black-footed pigmy rice rat).


Correlation index-based responsible-enzyme gene screening (CIRES), a novel DNA microarray-based method for enzyme gene involved in glycan biosynthesis.

  • Harumi Yamamoto‎ et al.
  • PloS one‎
  • 2007‎

Glycan biosynthesis occurs though a multi-step process that requires a variety of enzymes ranging from glycosyltransferases to those involved in cytosolic sugar metabolism. In many cases, glycan biosynthesis follows a glycan-specific, linear pathway. As glycosyltransferases are generally regulated at the level of transcription, assessing the overall transcriptional profile for glycan biosynthesis genes seems warranted. However, a systematic approach for assessing the correlation between glycan expression and glycan-related gene expression has not been reported previously.


Perturbation of the Relative Contribution of Molecular Chaperones in the Endoplasmic Reticulum.

  • Kiichiro Totani‎ et al.
  • ACS omega‎
  • 2020‎

We demonstrate the preferential orders of molecular chaperones glucose-regulated protein 94 (GRP94), binding immunoglobulin protein (BiP), and calreticulin (CRT) in an endoplasmic reticulum (ER) fraction from rat liver using columns conjugated with denatured myoglobin, RNase A, or β-lactoglobulin as client proteins in the presence or absence of ATP. The results showed that BiP, CRT, and GRP94 preferentially contributed myoglobin, RNase A, and β-lactoglobulin, respectively, in the presence of ATP. In the absence of ATP, GRP94 and CRT preferentially recognized misfolded myoglobin (α-helix-rich protein), whereas BiP preferentially recognized misfolded RNase A (α-helix/β-sheet mixed protein) and β-lactoglobulin (β-sheet-rich protein). The preferential order of ER chaperones may be dynamically regulated by ER conditions and the higher-order structure of client proteins.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: