Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Integrated platform and API for electrophysiological data.

  • Andrey Sobolev‎ et al.
  • Frontiers in neuroinformatics‎
  • 2014‎

Recent advancements in technology and methodology have led to growing amounts of increasingly complex neuroscience data recorded from various species, modalities, and levels of study. The rapid data growth has made efficient data access and flexible, machine-readable data annotation a crucial requisite for neuroscientists. Clear and consistent annotation and organization of data is not only an important ingredient for reproducibility of results and re-use of data, but also essential for collaborative research and data sharing. In particular, efficient data management and interoperability requires a unified approach that integrates data and metadata and provides a common way of accessing this information. In this paper we describe GNData, a data management platform for neurophysiological data. GNData provides a storage system based on a data representation that is suitable to organize data and metadata from any electrophysiological experiment, with a functionality exposed via a common application programming interface (API). Data representation and API structure are compatible with existing approaches for data and metadata representation in neurophysiology. The API implementation is based on the Representational State Transfer (REST) pattern, which enables data access integration in software applications and facilitates the development of tools that communicate with the service. Client libraries that interact with the API provide direct data access from computing environments like Matlab or Python, enabling integration of data management into the scientist's experimental or analysis routines.


Neurochemical Organization of the Drosophila Brain Visualized by Endogenously Tagged Neurotransmitter Receptors.

  • Shu Kondo‎ et al.
  • Cell reports‎
  • 2020‎

Neurotransmitters often have multiple receptors that induce distinct responses in receiving cells. Expression and localization of neurotransmitter receptors in individual neurons are therefore critical for understanding the operation of neural circuits. Here we describe a comprehensive library of reporter strains in which a convertible T2A-GAL4 cassette is inserted into endogenous neurotransmitter receptor genes of Drosophila. Using this library, we profile the expression of 75 neurotransmitter receptors in the brain. Cluster analysis reveals neurochemical segmentation of the brain, distinguishing higher brain centers from the rest. By recombinase-mediated cassette exchange, we convert T2A-GAL4 into split-GFP and Tango to visualize subcellular localization and activation of dopamine receptors in specific cell types. This reveals striking differences in their subcellular localization, which may underlie the distinct cellular responses to dopamine in different behavioral contexts. Our resources thus provide a versatile toolkit for dissecting the cellular organization and function of neurotransmitter systems in the fly brain.


A Segmentation Scheme for Complex Neuronal Arbors and Application to Vibration Sensitive Neurons in the Honeybee Brain.

  • Hidetoshi Ikeno‎ et al.
  • Frontiers in neuroinformatics‎
  • 2018‎

The morphology of a neuron is strongly related to its physiological properties, application of logical product and thus to information processing functions. Optical microscope images are widely used for extracting the structure of neurons. Although several approaches have been proposed to trace and extract complex neuronal structures from microscopy images, available methods remain prone to errors. In this study, we present a practical scheme for processing confocal microscope images and reconstructing neuronal structures. We evaluated this scheme using image data samples and associated "gold standard" reconstructions from the BigNeuron Project. In these samples, dendritic arbors belonging to multiple projection branches of the same neuron overlapped in space, making it difficult to automatically and accurately trace their structural connectivity. Our proposed scheme, which combines several software tools for image masking and filtering with an existing tool for dendritic segmentation and tracing, outperformed state-of-the-art automatic methods in reconstructing such neuron structures. For evaluating our scheme, we applied it to a honeybee local interneuron, DL-Int-1, which has complex arbors and is considered to be a critical neuron for encoding the distance information indicated in the waggle dance of the honeybee.


NeuronDepot: keeping your colleagues in sync by combining modern cloud storage services, the local file system, and simple web applications.

  • Philipp L Rautenberg‎ et al.
  • Frontiers in neuroinformatics‎
  • 2014‎

Neuroscience today deals with a "data deluge" derived from the availability of high-throughput sensors of brain structure and brain activity, and increased computational resources for detailed simulations with complex output. We report here (1) a novel approach to data sharing between collaborating scientists that brings together file system tools and cloud technologies, (2) a service implementing this approach, called NeuronDepot, and (3) an example application of the service to a complex use case in the neurosciences. The main drivers for our approach are to facilitate collaborations with a transparent, automated data flow that shields scientists from having to learn new tools or data structuring paradigms. Using NeuronDepot is simple: one-time data assignment from the originator and cloud based syncing-thus making experimental and modeling data available across the collaboration with minimum overhead. Since data sharing is cloud based, our approach opens up the possibility of using new software developments and hardware scalabitliy which are associated with elastic cloud computing. We provide an implementation that relies on existing synchronization services and is usable from all devices via a reactive web interface. We are motivating our solution by solving the practical problems of the GinJang project, a collaboration of three universities across eight time zones with a complex workflow encompassing data from electrophysiological recordings, imaging, morphological reconstructions, and simulations.


Spatial registration of neuron morphologies based on maximization of volume overlap.

  • Ajayrama Kumaraswamy‎ et al.
  • BMC bioinformatics‎
  • 2018‎

Morphological features are widely used in the study of neuronal function and pathology. Invertebrate neurons are often structurally stereotypical, showing little variance in gross spatial features but larger variance in their fine features. Such variability can be quantified using detailed spatial analysis, which however requires the morphologies to be registered to a common frame of reference.


Neo: an object model for handling electrophysiology data in multiple formats.

  • Samuel Garcia‎ et al.
  • Frontiers in neuroinformatics‎
  • 2014‎

Neuroscientists use many different software tools to acquire, analyze and visualize electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs. A common representation of the core data would improve interoperability and facilitate data-sharing. To that end, we propose here a language-independent object model, named "Neo," suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language. In addition to representing electrophysiology data in memory for the purposes of analysis and visualization, the Python implementation provides a set of input/output (IO) modules for reading/writing the data from/to a variety of commonly used file formats. Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB. Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation. For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualization. Software for neurophysiology data analysis and visualization built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in neurophysiology.


Data management routines for reproducible research using the G-Node Python Client library.

  • Andrey Sobolev‎ et al.
  • Frontiers in neuroinformatics‎
  • 2014‎

Structured, efficient, and secure storage of experimental data and associated meta-information constitutes one of the most pressing technical challenges in modern neuroscience, and does so particularly in electrophysiology. The German INCF Node aims to provide open-source solutions for this domain that support the scientific data management and analysis workflow, and thus facilitate future data access and reproducible research. G-Node provides a data management system, accessible through an application interface, that is based on a combination of standardized data representation and flexible data annotation to account for the variety of experimental paradigms in electrophysiology. The G-Node Python Library exposes these services to the Python environment, enabling researchers to organize and access their experimental data using their familiar tools while gaining the advantages that a centralized storage entails. The library provides powerful query features, including data slicing and selection by metadata, as well as fine-grained permission control for collaboration and data sharing. Here we demonstrate key actions in working with experimental neuroscience data, such as building a metadata structure, organizing recorded data in datasets, annotating data, or selecting data regions of interest, that can be automated to large degree using the library. Compliant with existing de-facto standards, the G-Node Python Library is compatible with many Python tools in the field of neurophysiology and thus enables seamless integration of data organization into the scientific data workflow.


Interneurons in the Honeybee Primary Auditory Center Responding to Waggle Dance-Like Vibration Pulses.

  • Hiroyuki Ai‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Female honeybees use the "waggle dance" to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee (Apis mellifera). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee.SIGNIFICANCE STATEMENT The waggle dance represents a form of symbolic communication used by honeybees to convey the location of food sources via species-specific sound. The brain mechanisms used to decipher this symbolic information are unknown. We examined interneurons in the honeybee primary auditory center and identified different neuron types with specific properties. The results of our computational analyses suggest that inhibitory connection plays a role in encoding waggle dance signals. Our results are critical for understanding how the honeybee deciphers information from the sound produced by the waggle dance and provide new insights regarding how common neural mechanisms are used by different species to achieve communication.


Adaptations during Maturation in an Identified Honeybee Interneuron Responsive to Waggle Dance Vibration Signals.

  • Ajayrama Kumaraswamy‎ et al.
  • eNeuro‎
  • 2019‎

Honeybees are social insects, and individual bees take on different social roles as they mature, performing a multitude of tasks that involve multi-modal sensory integration. Several activities vital for foraging, like flight and waggle dance communication, involve sensing air vibrations through their antennae. We investigated changes in the identified vibration-sensitive interneuron DL-Int-1 in the honeybee Apis mellifera during maturation by comparing properties of neurons from newly emerged adult and forager honeybees. Although comparison of morphological reconstructions of the neurons revealed no significant changes in gross dendritic features, consistent and region-dependent changes were found in dendritic density. Comparison of electrophysiological properties showed an increase in the firing rate differences between stimulus and nonstimulus periods in foragers compared with newly emerged adult bees. The observed differences in neurons of foragers compared with newly emerged adult honeybees suggest refined connectivity, improved signal propagation, and enhancement of response features possibly important for the network processing of air vibration signals relevant for the waggle dance communication of honeybees.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: