Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Sex-specific antennal sensory system in the ant Camponotus japonicus: glomerular organizations of antennal lobes.

  • Aki Nakanishi‎ et al.
  • The Journal of comparative neurology‎
  • 2010‎

Ants have well-developed chemosensory systems for social lives. The goal of our study is to understand the functional organization of the ant chemosensory system based on caste- and sex-specific differences. Here we describe the common and sex-specific glomerular organizations in the primary olfactory center, the antennal lobe of the carpenter ant Camponotus japonicus. Differential labeling of the two antennal nerves revealed distinct glomerular clusters innervated by seven sensory tracts (T1-T7 from ventral to dorsal) in the antennal lobe. T7 innervated 10 glomeruli, nine of which received thick axon terminals almost exclusively from the ventral antennal nerve. Coelocapitular (hygro-/thermoreceptive), coeloconic (thermoreceptive), and ampullaceal (CO2-receptive) sensilla, closely appositioned in the flagellum, housed one or three large sensory neurons supplying thick axons exclusively to the ventral antennal nerve. These axons, therefore, were thought to project into T7 glomeruli in all three castes. Workers and virgin females had about 140 T6 glomeruli, whereas males completely lacked these glomeruli. Female-specific basiconic sensilla (cuticular hydrocarbon-receptive) contained over 130 sensory neurons and were completely lacking in males' antennae. These sensory neurons may project into T6 glomeruli in the antennal lobe of workers and virgin females. Serotonin-immunopositive neurons innervated T1-T5 and T7 glomeruli but not T6 glomeruli in workers and virgin females. Because males had no equivalents to T6 glomeruli, serotonin-immunopositive neurons appeared to innervate all glomeruli in the male's antennal lobe. T6 glomeruli in workers and virgin females are therefore female-specific and may have functions related to female-specific tasks in the colony rather than sexual behaviors.


Organization of the antennal lobes in the praying mantis (Tenodera aridifolia).

  • Thomas Carle‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

Olfaction in insects plays pivotal roles in searching for food and/or for sexual partners. Although many studies have focused on the olfactory processes of nonpredatory insect species, little is known about those in predatory insects. Here, we investigated the anatomical features of the primary olfactory center (antennal lobes) in an insect predator whose visual system is well developed, the praying mantis Tenodera aridifolia. Both sexes of T. aridifolia were found to possess 54 glomeruli, and each glomerulus was identified based on its location and size. Moreover, we found a sexual dimorphism in three glomeruli (macroglomeruli) located at the entrance of the antennal nerves, which are 15 times bigger in males than their homologs in females. We additionally deduced the target glomeruli of olfactory sensory neurons housed in cognate types of sensilla by degenerating the sensory afferents. The macroglomeruli received sensory inputs from grooved peg sensilla, which are present in a large number at the proximal part of the males' antennae. Furthermore, our findings suggest that glomeruli at the posteriodorsal part of the antennal lobes receive sensory information from putative hygro- and thermosensitive sensilla. The origins of projections connected to the protocerebrum are also discussed. J. Comp. Neurol. 525:1685-1706, 2017. © 2016 Wiley Periodicals, Inc.


Two types of sensory proliferation patterns underlie the formation of spatially tuned olfactory receptive fields in the cockroach Periplaneta americana.

  • Hidehiro Watanabe‎ et al.
  • The Journal of comparative neurology‎
  • 2018‎

In the cockroach Periplaneta americana, to represent pheromone source in the receptive space, axon terminals of sex pheromone-receptive olfactory sensory neurons (pSNs) are topographically organized within the primary center, the macroglomerulus, according to the peripheral locations of sex pheromone-receptive single walled (sw)-B sensilla. In this study, we sought to determine when and where pSNs emerge in the nymphal antenna. We revealed two different pSN proliferation patterns that underlie the formation of topographic organization in the macroglomerulus. In nymphal antennae, which lack sw-B sensilla, pSNs are identified in the shorter sensilla, termed sw-A sensilla. Because new sw-A sensilla emerge on the proximal antenna at every molt, topographic organization in the macroglomerulus must be formed by adding axon terminals of newly emerged pSNs to the lateral region in the macroglomerulus at each molt. At the final molt, a huge number of new sw-B sensilla appeared throughout the whole antenna. Sw-B sensilla in the proximal part of the adult antenna were newly formed during the last instar stage, whereas those located in the distal antenna were transformed from sw-A sensilla. This transformation was accompanied by an increase in the number of pSNs. Axon terminals of newborn pSNs in new sw-B sensilla were recruited to the lateral part of the macroglomerulus, whereas those of newborn pSNs in transformed sw-B sensilla were recruited to the macroglomerulus according to the sensillar location. These mechanisms enable an increase in sensitivity to sex pheromone in adulthood while retaining the topographic map formed during the postembryonic development.


Three-dimensional atlas of thoracic ganglia in the praying mantis, Tenodera aridifolia.

  • Kentaro Fujiki‎ et al.
  • The Journal of comparative neurology‎
  • 2020‎

The praying mantis is a good model for the study of motor control, especially for investigating the transformation from sensory signals into motor commands. In insects, thoracic ganglia (TG) play an important role in motor control. To understand the functional organization of TG, an atlas is useful. However, except for the fruitfly, no three-dimensional atlas of TG has not been reported for insects. In this study, we generated a three-dimensional atlas of prothoracic, mesothoracic, and metathoracic ganglia in the praying mantis (Tenodera aridifolia). First, we observed serial sections of the prothoracic ganglion stained with hematoxylin and eosin to identify longitudinal tracts and transverse commissures. We then visualized neuropil areas by immunostaining whole-mount TG with an anti-synapsin antibody. Before labeling each neuropil area, standardization using the iterative shape averaging method was applied to images to make neuropil contours distinct. Neuropil areas in TG were defined based on their shape and relative position to tracts and commissures. Finally, a three-dimensional atlas was reconstructed from standardized images of the TG. The standard TG are available at the Comparative Neuroscience Platform website (cns.neuroinf.jp/modules/xoonips/detail.php?item_id=11946) and can be used as a common reference map to combine the anatomical data obtained from different individuals.


Sensory neurons that respond to sex and aggregation pheromones in the nymphal cockroach.

  • Kosuke Tateishi‎ et al.
  • Scientific reports‎
  • 2020‎

In the common pest cockroach, Periplaneta americana, behavioural responses to the sex and aggregation pheromones change in an age-dependent manner. Nymphs are attracted by the aggregation pheromone periplanolide-E (PLD-E) but not by the sex pheromone periplanone-B (PB) in faeces. Adults display prominent behaviours to PB but not to PLD-E. Despite the significant behavioural differences depending on postembryonic developmental stages, peripheral codings of the sex and aggregation pheromones have not been studied in the nymph of any insects as far as we know. In this study, we morphologically and electrophysiologically identified antennal sensilla that respond to PB and PLD-E in nymphal cockroaches. Although nymphs lacked the sex pheromone-responsive single-walled B (sw-B) sensilla identified in adult males, we found PB-responsive sensory neurons (PB-SNs) within newly identified sw-A2 sensilla, which exhibit different shapes but have the same olfactory pores as sw-B sensilla. Interestingly, PLD-E-responsive sensory neurons (PLD-E-SNs) were also identified in the same sensillar type, but PB and PLD-E were independently detected by different SNs. Both PB-SNs and PLD-E-SNs showed high sensitivity to their respective pheromones. The hemimetabolous insect nymph has an ability to detect these pheromones, suggesting that behaviours elicited by pheromones might be established in brain centres depending on postembryonic development.


Vibration-processing interneurons in the honeybee brain.

  • Hiroyuki Ai‎
  • Frontiers in systems neuroscience‎
  • 2010‎

The afferents of the Johnston's organ (JO) in the honeybee brain send their axons to three distinct areas, the dorsal lobe, the dorsal subesophageal ganglion (DL-dSEG), and the posterior protocerebral lobe (PPL), suggesting that vibratory signals detected by the JO are processed differentially in these primary sensory centers. The morphological and physiological characteristics of interneurons arborizing in these areas were studied by intracellular recording and staining. DL-Int-1 and DL-Int-2 have dense arborizations in the DL-dSEG and respond to vibratory stimulation applied to the JO in either tonic excitatory, on-off-phasic excitatory, or tonic inhibitory patterns. PPL-D-1 has dense arborizations in the PPL, sends axons into the ventral nerve cord (VNC), and responds to vibratory stimulation and olfactory stimulation simultaneously applied to the antennae in long-lasting excitatory pattern. These results show that there are at least two parallel pathways for vibration processing through the DL-dSEG and the PPL. In this study, Honeybee Standard Brain was used as the common reference, and the morphology of two types of interneurons (DL-Int-1 and DL-Int-2) and JO afferents was merged into the standard brain based on the boundary of several neuropiles, greatly supporting the understanding of the spatial relationship between these identified neurons and JO afferents. The visualization of the region where the JO afferents are closely appositioned to these DL interneurons demonstrated the difference in putative synaptic regions between the JO afferents and these DL interneurons (DL-Int-1 and DL-Int-2) in the DL. The neural circuits related to the vibration-processing interneurons are discussed.


Neurochemical Organization of the Drosophila Brain Visualized by Endogenously Tagged Neurotransmitter Receptors.

  • Shu Kondo‎ et al.
  • Cell reports‎
  • 2020‎

Neurotransmitters often have multiple receptors that induce distinct responses in receiving cells. Expression and localization of neurotransmitter receptors in individual neurons are therefore critical for understanding the operation of neural circuits. Here we describe a comprehensive library of reporter strains in which a convertible T2A-GAL4 cassette is inserted into endogenous neurotransmitter receptor genes of Drosophila. Using this library, we profile the expression of 75 neurotransmitter receptors in the brain. Cluster analysis reveals neurochemical segmentation of the brain, distinguishing higher brain centers from the rest. By recombinase-mediated cassette exchange, we convert T2A-GAL4 into split-GFP and Tango to visualize subcellular localization and activation of dopamine receptors in specific cell types. This reveals striking differences in their subcellular localization, which may underlie the distinct cellular responses to dopamine in different behavioral contexts. Our resources thus provide a versatile toolkit for dissecting the cellular organization and function of neurotransmitter systems in the fly brain.


Complete identification of four giant interneurons supplying mushroom body calyces in the cockroach Periplaneta americana.

  • Naomi Takahashi‎ et al.
  • The Journal of comparative neurology‎
  • 2017‎

Global inhibition is a fundamental physiological mechanism that has been proposed to shape odor representation in higher-order olfactory centers. A pair of mushroom bodies (MBs) in insect brains, an analog of the mammalian olfactory cortex, are implicated in multisensory integration and associative memory formation. With the use of single/multiple intracellular recording and staining in the cockroach Periplaneta americana, we succeeded in unambiguous identification of four tightly bundled GABA-immunoreactive giant interneurons that are presumably involved in global inhibitory control of the MB. These neurons, including three spiking neurons and one nonspiking neuron, possess dendrites in termination fields of MB output neurons and send axon terminals back to MB input sites, calyces, suggesting feedback roles onto the MB. The largest spiking neuron innervates almost exclusively the basal region of calyces, while the two smaller spiking neurons and the second-largest nonspiking neuron innervate more profusely the peripheral (lip) region of the calyces than the basal region. This subdivision corresponds well to the calycal zonation made by axon terminals of two populations of uniglomerular projection neurons with dendrites in distinct glomerular groups in the antennal lobe. The four giant neurons exhibited excitatory responses to every odor tested in a neuron-specific fashion, and two of the neurons also exhibited inhibitory responses in some recording sessions. Our results suggest that two parallel olfactory inputs to the MB undergo different forms of inhibitory control by the giant neurons, which may, in turn, be involved in different aspects of odor discrimination, plasticity, and state-dependent gain control. J. Comp. Neurol. 525:204-230, 2017. © 2016 Wiley Periodicals, Inc.


Changes in Psychological Distress During the COVID-19 Pandemic in Japan: A Longitudinal Study.

  • Hiroyuki Kikuchi‎ et al.
  • Journal of epidemiology‎
  • 2020‎

This longitudinal study aimed to examine the changes in psychological distress of the general public from the early to community-transmission phases of the COVID-19 pandemic and to investigate the factors related to these changes.


Spatio-temporal activity patterns of odor-induced synchronized potentials revealed by voltage-sensitive dye imaging and intracellular recording in the antennal lobe of the cockroach.

  • Hidehiro Watanabe‎ et al.
  • Frontiers in systems neuroscience‎
  • 2012‎

In animals, odor qualities are represented as both spatial activity patterns of glomeruli and temporal patterns of synchronized oscillatory signals in the primary olfactory centers. By optical imaging of a voltage-sensitive dye (VSD) and intracellular recording from secondary olfactory interneurons, we examined possible neural correlates of the spatial and temporal odor representations in the primary olfactory center, the antennal lobe (AL), of the cockroach Periplaneta americana. Voltage-sensitive dye imaging revealed that all used odorants induced odor-specific temporal patterns of depolarizing potentials in specific combinations of anterior glomeruli of the AL. The depolarizing potentials evoked by different odorants were temporally synchronized across glomeruli and were termed "synchronized potentials." These observations suggest that odor qualities are represented by spatio-temporal activity patterns of the synchronized potentials across glomeruli. We also performed intracellular recordings and stainings from secondary olfactory interneurons, namely projection neurons and local interneurons. We analyzed the temporal structures of enanthic acid-induced action potentials of secondary olfactory interneurons using simultaneous paired intracellular recording from two given neurons. Our results indicated that the multiple local interneurons synchronously fired in response to the olfactory stimulus. In addition, all stained enanthic acid-responsive projection neurons exhibited dendritic arborizations within the glomeruli where the synchronized potentials were evoked. Since multiple local interneurons are known to synapse to a projection neuron in each glomerulus in the cockroach AL, converging inputs from local interneurons to the projection neurons appear to contribute the odorant specific spatio-temporal activity patterns of the synchronized potentials.


A Segmentation Scheme for Complex Neuronal Arbors and Application to Vibration Sensitive Neurons in the Honeybee Brain.

  • Hidetoshi Ikeno‎ et al.
  • Frontiers in neuroinformatics‎
  • 2018‎

The morphology of a neuron is strongly related to its physiological properties, application of logical product and thus to information processing functions. Optical microscope images are widely used for extracting the structure of neurons. Although several approaches have been proposed to trace and extract complex neuronal structures from microscopy images, available methods remain prone to errors. In this study, we present a practical scheme for processing confocal microscope images and reconstructing neuronal structures. We evaluated this scheme using image data samples and associated "gold standard" reconstructions from the BigNeuron Project. In these samples, dendritic arbors belonging to multiple projection branches of the same neuron overlapped in space, making it difficult to automatically and accurately trace their structural connectivity. Our proposed scheme, which combines several software tools for image masking and filtering with an existing tool for dendritic segmentation and tracing, outperformed state-of-the-art automatic methods in reconstructing such neuron structures. For evaluating our scheme, we applied it to a honeybee local interneuron, DL-Int-1, which has complex arbors and is considered to be a critical neuron for encoding the distance information indicated in the waggle dance of the honeybee.


NeuronDepot: keeping your colleagues in sync by combining modern cloud storage services, the local file system, and simple web applications.

  • Philipp L Rautenberg‎ et al.
  • Frontiers in neuroinformatics‎
  • 2014‎

Neuroscience today deals with a "data deluge" derived from the availability of high-throughput sensors of brain structure and brain activity, and increased computational resources for detailed simulations with complex output. We report here (1) a novel approach to data sharing between collaborating scientists that brings together file system tools and cloud technologies, (2) a service implementing this approach, called NeuronDepot, and (3) an example application of the service to a complex use case in the neurosciences. The main drivers for our approach are to facilitate collaborations with a transparent, automated data flow that shields scientists from having to learn new tools or data structuring paradigms. Using NeuronDepot is simple: one-time data assignment from the originator and cloud based syncing-thus making experimental and modeling data available across the collaboration with minimum overhead. Since data sharing is cloud based, our approach opens up the possibility of using new software developments and hardware scalabitliy which are associated with elastic cloud computing. We provide an implementation that relies on existing synchronization services and is usable from all devices via a reactive web interface. We are motivating our solution by solving the practical problems of the GinJang project, a collaboration of three universities across eight time zones with a complex workflow encompassing data from electrophysiological recordings, imaging, morphological reconstructions, and simulations.


Effect of Olfactory Stimulus on the Flight Course of a Honeybee, Apis mellifera, in a Wind Tunnel.

  • Hidetoshi Ikeno‎ et al.
  • Insects‎
  • 2013‎

It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.


Spatial registration of neuron morphologies based on maximization of volume overlap.

  • Ajayrama Kumaraswamy‎ et al.
  • BMC bioinformatics‎
  • 2018‎

Morphological features are widely used in the study of neuronal function and pathology. Invertebrate neurons are often structurally stereotypical, showing little variance in gross spatial features but larger variance in their fine features. Such variability can be quantified using detailed spatial analysis, which however requires the morphologies to be registered to a common frame of reference.


Two Parallel Olfactory Pathways for Processing General Odors in a Cockroach.

  • Hidehiro Watanabe‎ et al.
  • Frontiers in neural circuits‎
  • 2017‎

In animals, sensory processing via parallel pathways, including the olfactory system, is a common design. However, the mechanisms that parallel pathways use to encode highly complex and dynamic odor signals remain unclear. In the current study, we examined the anatomical and physiological features of parallel olfactory pathways in an evolutionally basal insect, the cockroach Periplaneta americana. In this insect, the entire system for processing general odors, from olfactory sensory neurons to higher brain centers, is anatomically segregated into two parallel pathways. Two separate populations of secondary olfactory neurons, type1 and type2 projection neurons (PNs), with dendrites in distinct glomerular groups relay olfactory signals to segregated areas of higher brain centers. We conducted intracellular recordings, revealing olfactory properties and temporal patterns of both types of PNs. Generally, type1 PNs exhibit higher odor-specificities to nine tested odorants than type2 PNs. Cluster analyses revealed that odor-evoked responses were temporally complex and varied in type1 PNs, while type2 PNs exhibited phasic on-responses with either early or late latencies to an effective odor. The late responses are 30-40 ms later than the early responses. Simultaneous intracellular recordings from two different PNs revealed that a given odor activated both types of PNs with different temporal patterns, and latencies of early and late responses in type2 PNs might be precisely controlled. Our results suggest that the cockroach is equipped with two anatomically and physiologically segregated parallel olfactory pathways, which might employ different neural strategies to encode odor information.


Silencing the odorant receptor co-receptor impairs olfactory reception in a sensillum-specific manner in the cockroach.

  • Kosuke Tateishi‎ et al.
  • iScience‎
  • 2022‎

Insects detect odors via a large variety of odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs). The insect OR is a heteromeric complex composed of a ligand-specific receptor and the co-receptor (ORco). In this study, we identified the ORco gene of the cockroach, Periplaneta americana (PameORco), and performed RNAi-based functional analysis of PameORco. All OSNs in the basiconic sensilla expressed PameORco and received a large variety of odors including sex pheromones. In trichoid sensilla, a PameORco-positive OSN was consistently paired with a PameORco-negative OSN tuned to acids. In adult cockroaches injected with PameORco dsRNA at the nymphal stage, the expression of PameORco, odor receptions via ORs, and its central processing were strongly suppressed. These results provide new insights into the molecular basis of olfactory reception in the cockroach. The long-lasting and irreversible effects of PameORco RNAi would be an effective method for controlling the household pest.


Aldehyde-specific responses of olfactory sensory neurons in the praying mantis.

  • Kota Ezaki‎ et al.
  • Scientific reports‎
  • 2021‎

Although praying mantises rely mainly on vision for predatory behaviours, olfaction also plays a critical role in feeding and mating behaviours. However, the receptive processes underlying olfactory signals remain unclear. Here, we identified olfactory sensory neurons (OSNs) that are highly tuned to detect aldehydes in the mantis Tenodera aridifolia. In extracellular recordings from OSNs in basiconic sensilla on the antennae, we observed three different spike shapes, indicating that at least three OSNs are housed in a single basiconic sensillum. Unexpectedly, one of the three OSNs exhibited strong excitatory responses to a set of aldehydes. Based on the similarities of the response spectra to 15 different aldehydes, the aldehyde-specific OSNs were classified into three classes: B, S, and M. Class B broadly responded to most aldehydes used as stimulants; class S responded to short-chain aldehydes (C3-C7); and class M responded to middle-length chain aldehydes (C6-C9). Thus, aldehyde molecules can be finely discriminated based on the activity patterns of a population of OSNs. Because many insects emit aldehydes for pheromonal communication, mantises might use aldehydes as olfactory cues for locating prey habitat.


Interneurons in the Honeybee Primary Auditory Center Responding to Waggle Dance-Like Vibration Pulses.

  • Hiroyuki Ai‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Female honeybees use the "waggle dance" to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee (Apis mellifera). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee.SIGNIFICANCE STATEMENT The waggle dance represents a form of symbolic communication used by honeybees to convey the location of food sources via species-specific sound. The brain mechanisms used to decipher this symbolic information are unknown. We examined interneurons in the honeybee primary auditory center and identified different neuron types with specific properties. The results of our computational analyses suggest that inhibitory connection plays a role in encoding waggle dance signals. Our results are critical for understanding how the honeybee deciphers information from the sound produced by the waggle dance and provide new insights regarding how common neural mechanisms are used by different species to achieve communication.


Development of severe psychological distress among low-income individuals during the COVID-19 pandemic: longitudinal study.

  • Hiroyuki Kikuchi‎ et al.
  • BJPsych open‎
  • 2021‎

It has been indicated that the health impact of COVID-19 is potentially greater in individuals from lower socioeconomic status than in the overall population.


Adaptations during Maturation in an Identified Honeybee Interneuron Responsive to Waggle Dance Vibration Signals.

  • Ajayrama Kumaraswamy‎ et al.
  • eNeuro‎
  • 2019‎

Honeybees are social insects, and individual bees take on different social roles as they mature, performing a multitude of tasks that involve multi-modal sensory integration. Several activities vital for foraging, like flight and waggle dance communication, involve sensing air vibrations through their antennae. We investigated changes in the identified vibration-sensitive interneuron DL-Int-1 in the honeybee Apis mellifera during maturation by comparing properties of neurons from newly emerged adult and forager honeybees. Although comparison of morphological reconstructions of the neurons revealed no significant changes in gross dendritic features, consistent and region-dependent changes were found in dendritic density. Comparison of electrophysiological properties showed an increase in the firing rate differences between stimulus and nonstimulus periods in foragers compared with newly emerged adult bees. The observed differences in neurons of foragers compared with newly emerged adult honeybees suggest refined connectivity, improved signal propagation, and enhancement of response features possibly important for the network processing of air vibration signals relevant for the waggle dance communication of honeybees.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: