Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Epb41l5 competes with Delta as a substrate for Mib1 to coordinate specification and differentiation of neurons.

  • Miho Matsuda‎ et al.
  • Development (Cambridge, England)‎
  • 2016‎

We identified Erythrocyte membrane protein band 4.1-like 5 (Epb41l5) as a substrate for the E3 ubiquitin ligase Mind bomb 1 (Mib1), which is essential for activation of Notch signaling. Although loss of Epb41l5 does not significantly alter the pattern of neural progenitor cells (NPCs) specified as neurons at the neural plate stage, it delays their delamination and differentiation after neurulation when NPCs normally acquire organized apical junctional complexes (AJCs) in the zebrafish hindbrain. Delays in differentiation are reduced by knocking down N-cadherin, a manipulation expected to help destabilize adherens junctions (AJs). This suggested that delays in neuronal differentiation in epb41l5-deficient embryos are related to a previously described role for Epb41l5 in facilitating disassembly of cadherin-dependent AJCs. Mib1 ubiquitylates Epb41l5 to promote its degradation. DeltaD can compete with Epb41l5 to reduce Mib1-dependent Epb41l5 degradation. In this context, increasing the number of NPCs specified to become neurons, i.e. cells expressing high levels of DeltaD, stabilizes Epb41l5 in the embryo. Together, these observations suggest that relatively high levels of Delta stabilize Epb41l5 in NPCs specified as neurons. This, we suggest, helps coordinate NPC specification with Epb41l5-dependent delamination and differentiation as neurons.


Molecular characterization and transcriptional analysis of non-mammalian type Toll like receptor (TLR21) from rock bream (Oplegnathus fasciatus).

  • Thanthrige Thiunuwan Priyathilaka‎ et al.
  • Gene‎
  • 2014‎

Toll-like receptors (TLRs) are a large family of pattern recognition receptors, which are involved in triggering host immune responses against various pathogens by detecting their evolutionarily conserved pathogen associated molecular patterns (PAMPs). TLR21 is a non-mammalian type TLR, which recognizes unmethylated CpG DNA, and is considered as a functional homolog of mammalian TLR9. In this study, we attempted to identify and characterize a novel TLR21 counterpart from rock bream (Oplegnathus fasciatus) designated as RbTLR21, at molecular level. The complete coding sequence of RbTLR21 was 2919bp in length, which encodes a polypeptide of 973 amino acids with a predicted molecular mass of 112kDa and a theoretical isoelectric point of 8.6. The structure of the deduced RbTLR21 protein is similar to that of the members of typical TLR family, and includes the ectodomain, which consists of 16 leucine rich repeats (LRRs), a transmembrane domain, and a cytoplasmic Toll/interleukin-1 receptor (TIR) domain. According to the pairwise sequence analysis data, RbTLR21 was homologous to that of the orange-spotted grouper (Epinephelus coioides) with 76.9% amino acid identity. Furthermore, our phylogenetic analysis revealed that RbTLR21 is closely related to E. coioides TLR21. The RbTLR21 was ubiquitously expressed in all the tissues tested, but the highest expression was found in spleen. Additionally, upon stimulation with Streptococcus iniae, rock bream iridovirus (RBIV), and Edwardsiella tarda, RbTLR21 mRNA was significantly up-regulated in spleen tissues. Collectively, our findings suggest that RbTLR21 is indeed an ortholog of the TLR21 family and may be important in mounting host immune responses against pathogenic infections.


Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy.

  • Andrew G York‎ et al.
  • Nature methods‎
  • 2012‎

We demonstrate three-dimensional (3D) super-resolution in live multicellular organisms using structured illumination microscopy (SIM). Sparse multifocal illumination patterns generated by a digital micromirror device (DMD) allowed us to physically reject out-of-focus light, enabling 3D subdiffractive imaging in samples eightfold thicker than had been previously imaged with SIM. We imaged samples at one 2D image per second, at resolutions as low as 145 nm laterally and 400 nm axially. In addition to dual-labeled, whole fixed cells, we imaged GFP-labeled microtubules in live transgenic zebrafish embryos at depths >45 μm. We captured dynamic changes in the zebrafish lateral line primordium and observed interactions between myosin IIA and F-actin in cells encapsulated in collagen gels, obtaining two-color 4D super-resolution data sets spanning tens of time points and minutes without apparent phototoxicity. Our method uses commercially available parts and open-source software and is simpler than existing SIM implementations, allowing easy integration with wide-field microscopes.


Genomic characterization and transcriptional evidence for the involvement of complement component 7 in immune response of rock bream (Oplegnathus fasciatus).

  • W D Niroshana Wickramaarachchi‎ et al.
  • Developmental and comparative immunology‎
  • 2013‎

The complement component 7 (C7) is the central mediator of pathogenic attack at the membrane surface and its binding to the C5b-7 complex triggers cytolytic signaling. In this study, C7 of rock bream (Oplegnathus fasciatus) was identified (Rb-C7) and characterized at the genomic level. The Rb-C7 gene contains 18 exons and 17 introns and is composed of a 2490 bp complete open reading frame (ORF). The encoded polypeptide (830 amino acids) contains a number of well-conserved C7 signature domains. Important putative transcription factor binding sites, including those for NF-κB, SP-1, C/EBP, AP-1 and OCT-1, are present in the 5'-flanking region of Rb-C7. Phylogenetic analysis revealed a close proximity of Rb-C7 with the orthologues in tilapia and Japanese flounder. Quantitative real-time PCR (qPCR) analysis confirmed constitutive Rb-C7 expression throughout all the examined tissue of healthy rock bream, with highest expression in liver. In immune challenge experiment, Rb-C7 expression was up-regulated in head kidney and liver in response to Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide and rock bream iridovirus (RBIV). Furthermore, significant increases of both intracellular expression level and the number of Rb-C7-expressing cells were detected by in situ hybridization assay in head kidney and liver tissues upon E. tarda infection. These results suggested that Rb-C7 is lytic pathway gene in complement system and its transcriptional regulation may be an important immune response in pathogenic defense mechanism of rock bream.


Zebrafish Posterior Lateral Line primordium migration requires interactions between a superficial sheath of motile cells and the skin.

  • Damian E Dalle Nogare‎ et al.
  • eLife‎
  • 2020‎

The Zebrafish Posterior Lateral Line primordium migrates in a channel between the skin and somites. Its migration depends on the coordinated movement of its mesenchymal-like leading cells and trailing cells, which form epithelial rosettes, or protoneuromasts. We describe a superficial population of flat primordium cells that wrap around deeper epithelialized cells and extend polarized lamellipodia to migrate apposed to the overlying skin. Polarization of lamellipodia extended by both superficial and deeper protoneuromast-forming cells depends on Fgf signaling. Removal of the overlying skin has similar effects on superficial and deep cells: lamellipodia are lost, blebs appear instead, and collective migration fails. When skinned embryos are embedded in Matrigel, basal and superficial lamellipodia are recovered; however, only the directionality of basal protrusions is recovered, and migration is not rescued. These observations support a key role played by superficial primordium cells and the skin in directed migration of the Posterior Lateral Line primordium.


Molecular and functional analyses of the fast skeletal myosin light chain2 gene of the Korean oily bitterling, Acheilognathus koreensis.

  • Hee Jeong Kong‎ et al.
  • International journal of molecular sciences‎
  • 2013‎

We identified and characterized the primary structure of the Korean oily bitterling Acheilognathus koreensis fast skeletal myosin light chain 2 (Akmlc2f), gene. Encoded by seven exons spanning 3955 bp, the deduced 168-amino acid AkMLC2f polypeptide contained an EF-hand calcium-binding motif and showed strong homology (80%-98%) with the MLC2 proteins of Ictalurus punctatus and other species, including mammals. Akmlc2f mRNA was highly enriched in skeletal muscles, and was detectable in other tissues. The upstream regions of Akmlc2f included a TATA box, one copy of a putative MEF-2 binding site and several putative C/EBPβ binding sites. The functional activity of the promoter region of Akmlc2f was examined using luciferase and red fluorescent protein reporters. The Akmlc2f promoter-driven reporter expressions were detected and increased by the C/EBPβ transcription factor in HEK293T cells. The activity of the promoter of Akmlc2f was also confirmed in the developing zebrafish embryo. Although the detailed mechanism underlying the expression of Akmlc2f remains unknown, these results suggest the muscle-specific expression of Akmlc2f transcript and the functional activation of Akmlc2f promoter by C/EBPβ.


Generation of motor neurons requires spatiotemporal coordination between retinoic acid and Mib-mediated Notch signaling.

  • Hee Jeong Kong‎ et al.
  • Animal cells and systems‎
  • 2018‎

Mind bomb (Mib) is an E3 ubiquitin ligase that activates the Notch signaling pathway. A previous study demonstrated that the generation of late-born GABAergic neurons may be regulated by the interplay between Mib and retinoic acid (RA). However, the relationship between Mib function and the retinoid pathway during the generation of late-born motor neurons remains unclear. We investigated the differentiation of neural progenitors into motor neurons by inhibition of Notch signaling and administration of RA to Tg[hsp70-Mib:EGFP] embryos. The number of motor neurons in the ventral spinal cord increased or decreased depending on the temporal inhibition of Mib-mediated Notch signaling. Inhibition of the retinoid pathway by citral treatment had a synergistic effect with overexpression of Mib:EGFP on the generation of ectopic motor neurons. Additionally, the proteolytic fragment of Mib was detected in differentiated P19 cells following treatment with RA. Our observations imply that the function of Mib may be attenuated by the retinoid pathway, and that Mib-mediated Notch signaling and the retinoid pathway play critical roles in the spatiotemporal differentiation of motor neurons.


Molecular cloning, expression and functional characterization of a teleostan cytokine-induced apoptosis inhibitor from rock bream (Oplegnathus fasciatus).

  • Don Anushka Sandaruwan Elvitigala‎ et al.
  • Developmental and comparative immunology‎
  • 2015‎

Apoptosis plays a key role in the physiology of multicellular organisms and is regulated by different promoting and inhibitory mechanisms. Cytokine-induced apoptotic inhibitor (CIAPI) was recently identified as a key factor involved in apoptosis inhibition in higher vertebrate lineages. However, most of the CIAPIs of lower vertebrate species are yet to be characterized. Herein, we molecularly characterized a teleostan counterpart of CIAPI from rock bream (Oplegnathus fasciatus), designating as RbCIAPI. The complete coding region of RbCIAPI was consisted of 942 nucleotides encoding a protein of 313 amino acids with a predicted molecular mass of ~33 kDa. RbCIAPI gene exhibited a multi-exonic architecture, consisting 9 exons interrupted by 8 introns. Protein sequence analysis revealed that RbCIAPI shares significant homology with known CIAPI counterparts, and phylogenetic reconstruction confirmed its closer evolutionary relationship with its fish counterparts. Ubiquitous spatial distribution of RbCIAPI was detected in our quantitative real time polymerase chain reaction (qPCR) analysis, where more prominent expression levels were observed in the blood and liver tissues. Moreover, the RbCIAPI basal transcription level was found to be modulated by different bacterial and viral stimuli, which could be plausibly supported by our previous observations on the transcriptional modulation of the caspase 3 counterpart of rock bream (Rbcasp3) in response to the same stimuli. In addition, our in vitro functional assay demonstrated that recombinant RbCIAPI could detectably inhibit the proteolysis activity of recombinant Rbcasp3. Collectively, our preliminary results suggest that RbCIAPI may play an anti-apoptotic role in rock bream physiology, likely by inhibiting the caspase-dependent apoptosis pathway. Therefore, RbCIAPI potentially plays an important role in host immunity by regulating the apoptosis process under pathogenic stress.


Zath3, a neural basic helix-loop-helix gene, regulates early neurogenesis in the zebrafish.

  • Su-Hyeon Park‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

We have isolated a basic helix-loop-helix (bHLH) gene homologous to the Drosophila proneural gene atonal, termed zath3, from zebrafish. zath3 is expressed in neurons of the central nervous system and in subsets of cranial ganglia. Zebrafish mindbomb (mib) mutants have a higher density of zath3 expressing cells and narrowminded (nrd) mutants lack zath3 expression in a domain corresponding to primary sensory neurons showing that the expression of zath3 is regulated by both mib and nrd. Injection of synthetic zath3 RNA into zebrafish embryos expands the neural plate size, promotes ectopic expression of neuronal markers, and partially rescues the deficit of sensory neurons seen in nrd mutants. Interfering with zath3 function using antisense morpholino oligonucleotides (MO) has no significant effect on early neurogenesis. However, a double knock down of zath3 and neurogenin1 (ngn1), another atonal homologue, with morpholinos (MOs) leads to more severe defects in neurogenesis than are seen with ngn1 MO alone: a subtle reduction of motor and inter-neurons, and an almost complete loss all cranial ganglia. This study suggests that zath3 and ngn1 have partially overlapping roles in early neurogenesis.


PlexinA4 is necessary as a downstream target of Islet2 to mediate Slit signaling for promotion of sensory axon branching.

  • Toshio Miyashita‎ et al.
  • Development (Cambridge, England)‎
  • 2004‎

Slit is a secreted protein known to repulse the growth cones of commissural neurons. By contrast, Slit also promotes elongation and branching of axons of sensory neurons. The reason why different neurons respond to Slit in different ways is largely unknown. Islet2 is a LIM/homeodomain-type transcription factor that specifically regulates elongation and branching of the peripheral axons of the primary sensory neurons in zebrafish embryos. We found that PlexinA4, a transmembrane protein known to be a co-receptor for class III semaphorins, acts downstream of Islet2 to promote branching of the peripheral axons of the primary sensory neurons. Intriguingly, repression of PlexinA4 function by injection of the antisense morpholino oligonucleotide specific to PlexinA4 or by overexpression of the dominant-negative variant of PlexinA4 counteracted the effects of overexpression of Slit2 to induce branching of the peripheral axons of the primary sensory neurons in zebrafish embryos, suggesting involvement of PlexinA4 in the Slit signaling cascades for promotion of axonal branching of the sensory neurons. Colocalized expression of Robo, a receptor for Slit2, and PlexinA4 is observed not only in the primary sensory neurons of zebrafish embryos but also in the dendrites of the pyramidal neurons of the cortex of the mammals, and may be important for promoting the branching of either axons or dendrites in response to Slit, as opposed to the growth cone collapse.


Rock bream (Oplegnathus fasciatus) serpin, protease nexin-1: transcriptional analysis and characterization of its antiprotease and anticoagulant activities.

  • Navaneethaiyer Umasuthan‎ et al.
  • Developmental and comparative immunology‎
  • 2011‎

Protease nexin-1 (PN-1) is a serine protease inhibitor (SERPIN) protein with functional roles in growth, development, patho-physiology and injury. Here, we report our work to clone, analyze the expression profile and characterize the properties of the PN-1 gene in rock bream (Rb), Oplegnathus fasciatus. RbPN-1 encodes a peptide of 397 amino acids (AA) with a predicted molecular mass of 44 kDa and a 23 AA signal peptide. RbPN-1 protein was found to harbor a characteristic SERPIN domain comprised of a SERPIN signature and having sequence homology to vertebrate PN-1s. The greatest identity (85%) was observed with PN-1 from the three-spined stickleback fish, Gasterosteus aculeatus. The functional domains, including a heparin binding site and reactive centre loop were conserved between RbPN-1 and other fish PN-1s; in particular, they were found to correspond to components of the human plasminogen activator inhibitor 1, PAI-1. Phylogenetic analysis indicated that RbPN-1 was closer to homologues of green spotted pufferfish and Japanese pufferfish. Recombinant RbPN-1 demonstrated antiprotease activity against trypsin (48%) and thrombin (89%) in a dose-dependent manner, and its antithrombotic activity was potentiated by heparin. The anticoagulant function prolonged clotting time by 3.7-fold, as compared to the control in an activated partial thromboplastin time assay. Quantitative real-time PCR results indicated that RbPN-1 is transcribed in many endogenous tissues at different levels. Lipopolysaccharide (LPS) stimulated a prolonged transcriptional response in hematic cells, and Rb iridovirus up-regulated the RbPN-1 mRNA level in hematic cells to a maximum of 3.4-fold at 12 h post-infection. Interestingly, LPS and Edwardsiella tarda significantly induced the RbPN-1 transcription at the late phase of infection. In vivo studies indicated that injury response caused a temporal suppression in RbPN-1 transcription, in conjunction with that of another SERPIN, rock bream heparin cofactor II, RbHCII. Taken together, our findings suggest that PN-1 functions as an antiprotease and anticoagulant and that SERPINs (PN-1 and HCII) are likely to contribute to immunity and post-injury responses.


Genomic characterization and expression analysis of complement component 8α and 8β in rock bream (Oplegnathus fasciatus).

  • W D Niroshana Wickramaarachchi‎ et al.
  • Developmental and comparative immunology‎
  • 2013‎

The complement component 8α and 8β are glycoproteins that mediate formation of the membrane attack complex (MAC) on the surface of target cells. Full-length complement C8α (Rb-C8α) and C8β (Rb-C8β) sequences were identified from a cDNA library of rock bream (Oplegnathus fasciatus), and their genomic sequences were obtained by screening and sequencing of a bacterial artificial chromosome (BAC) genomic DNA library of rock bream. The Rb-C8α gene contains 64bp of 5'-UTR, open reading frame (ORF) of 1794bp, which encodes a polypeptide of 598 amino acids, 212bp of 3'-UTR. The Rb-C8β gene contains 5'-UTR of 27bp, open reading frame (ORF) of 1761bp, which encodes a polypeptide of 587 amino acids, 3'-UTR of 164bp. Rb-C8α consists of 11 exons interrupted by 10 introns and Rb-C8β consists of 12 exons interrupted by 11 introns. Sequence analysis revealed that both Rb-C8α and Rb-C8β contain thrombospondin type-1, a low-density lipoprotein receptor domain class A, membrane attack complex/perforin (MACPF) domain and epidermal growth factor like domain. The promoter regions of both genes contain important putative transcription factor binding sites including those for NF-κB, SP-1, C/EBP, AP-1, and OCT-1. Rb-C8α and Rb-C8β showed the highest amino acid identity of 62% and 83% to rainbow trout C8α and Japanese flounder C8β respectively. Quantitative real-time PCR analysis confirmed that Rb-C8α and Rb-C8β were constitutively expressed in all examined tissues, isolated from healthy rock bream, with highest expression occurring in liver. Pathogen challenge, including Edwardsiella tarda, Streptococcus iniae, and rock bream iridovirus led to up regulation of Rb-C8α and Rb-C8β in liver. Positive regulations upon bacterial and viral challenges, and high degree of evolutionary relationship to respective orthologues, confirmed that Rb-C8α and Rb-C8β important immune genes, likely involved in the complement system lytic pathway of rock bream.


Molecular profile and functional characterization of the ferritin H subunit from rock bream (Oplegnathus fasciatus), revealing its putative role in host antioxidant and immune defense.

  • Don Anushka Sandaruwan Elvitigala‎ et al.
  • Developmental and comparative immunology‎
  • 2014‎

Ferritins are iron binding proteins made out of 24 subunits, involved in iron homeostasis and metabolism in cellular environments. Here, we sought to identify and functionally characterize a one type of subunits of ferritin (ferritin H-like subunit) from rock bream (Oplegnathus fasciatus; RbFerH). The complete coding sequence of RbFerH was 531 bp in length, encoding a 177-amino acid protein with a predicted molecular mass of 20.8 kDa. The deduced protein structure possessed the domain architecture characteristic of known ferritin H subunits, including metal ligands for iron binding, a ferroxidase center, and two iron-binding region signatures. As expected, the 5' untranslated region of the RbFerH cDNA sequence contained a putative iron response element region, a characteristic regulatory element involved in its translation. The RbFerH gene comprised 5 exons and 4 introns spanning a 4195 bp region. Overexpressed recombinant RbFerH protein demonstrated prominent Fe(II) ion depriving activity, bacteriostatic properties, and protective effects against oxidative double-stranded DNA damage. Using quantitative polymerase chain reaction (qPCR), we found that RbFerH was expressed ubiquitously in the majority of physiologically important tissues in rock bream. A greater abundance of the mRNA transcripts were detected in blood and liver tissues. Upon administering different microbial pathogens and pathogen-derived mitogens, RbFerH transcription was markedly elevated in the blood of rock bream. Taken together, our findings suggest that RbFerH acts as a potent iron sequestrator in rock bream and may actively participate in antimicrobial as well as antioxidative defense.


Identification of the Mind Bomb1 Interaction Domain in Zebrafish DeltaD.

  • Gregory Palardy‎ et al.
  • PloS one‎
  • 2015‎

Ubiquitylation promotes endocytosis of the Notch ligands like Delta and Serrate and is essential for them to effectively activate Notch in a neighboring cell. The RING E3 ligase Mind bomb1 (Mib1) ubiquitylates DeltaD to facilitate Notch signaling in zebrafish. We have identified a domain in the intracellular part of the zebrafish Notch ligand DeltaD that is essential for effective interactions with Mib1. We show that elimination of the Mind bomb1 Interaction Domain (MID) or mutation of specific conserved motifs in this domain prevents effective Mib1-mediated ubiquitylation and internalization of DeltaD. Lateral inhibition mediated by Notch signaling regulates early neurogenesis in zebrafish. In this context, Notch activation suppresses neurogenesis, while loss of Notch-mediated lateral inhibition results in a neurogenic phenotype, where too many cells are allowed to become neurons. While Mib1-mediated endocytosis of DeltaD is essential for effective activation of Notch in a neighboring cell (in trans) it is not required for DeltaD to inhibit function of Notch receptors in the same cell (in cis). As a result, forms of DeltaD that have the MID can activate Notch in trans and suppress early neurogenesis when mRNA encoding it is ectopically expressed in zebrafish embryos. On the other hand, when the MID is eliminated/mutated in DeltaD, its ability to activate Notch in trans fails but ability to inhibit in cis is retained. As a result, ectopic expression of DeltaD lacking an effective MID results in a failure of Notch-mediated lateral inhibition and a neurogenic phenotype.


Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta.

  • Motoyuki Itoh‎ et al.
  • Developmental cell‎
  • 2003‎

Lateral inhibition, mediated by Notch signaling, leads to the selection of cells that are permitted to become neurons within domains defined by proneural gene expression. Reduced lateral inhibition in zebrafish mib mutant embryos permits too many neural progenitors to differentiate as neurons. Positional cloning of mib revealed that it is a gene in the Notch pathway that encodes a RING ubiquitin ligase. Mib interacts with the intracellular domain of Delta to promote its ubiquitylation and internalization. Cell transplantation studies suggest that mib function is essential in the signaling cell for efficient activation of Notch in neighboring cells. These observations support a model for Notch activation where the Delta-Notch interaction is followed by endocytosis of Delta and transendocytosis of the Notch extracellular domain by the signaling cell. This facilitates intramembranous cleavage of the remaining Notch receptor, release of the Notch intracellular fragment, and activation of target genes in neighboring cells.


Histone deacetylase is required for the activation of Wnt/β-catenin signaling crucial for heart valve formation in zebrafish embryos.

  • Young-Seop Kim‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

During vertebrate heart valve formation, Wnt/β-catenin signaling induces BMP signals in atrioventricular canal (AVC) myocardial cells and underlying AVC endocardial cells then undergo endothelial-mesenchymal transdifferentiation (EMT) by receiving this BMP signals. Histone deacetylases (HDACs) have been implicated in numerous developmental processes by regulating gene expression. However, their specific roles in controlling heart valve development are largely unexplored. To investigate the role of HDACs in vertebrate heart valve formation, we treated zebrafish embryos with trichostatin A (TSA), an inhibitor of class I and II HDACs, from 36 to 48 h post-fertilization (hpf) during which heart looping and valve formation occur. Following TSA treatment, abnormal linear heart tube development was observed. In these embryos, expression of AVC myocardial bmp4 and AVC endocardial notch1b genes was markedly reduced with subsequent failure of EMT in the AVC endocardial cells. However, LiCl-mediated activation of Wnt/β-catenin signaling was able to rescue defective heart tube formation, bmp4 and notch1b expression, and EMT in the AVC region. Taken together, our results demonstrated that HDAC activity plays a pivotal role in vertebrate heart tube formation by activating Wnt/β-catenin signaling which induces bmp4 expression in AVC myocardial cells.


The Regulatory Region of Muscle-Specific Alpha Actin 1 Drives Fluorescent Protein Expression in Olive Flounder Paralichthys olivaceus.

  • Hee Jeong Kong‎ et al.
  • Development & reproduction‎
  • 2019‎

To develop a promoter capable of driving transgene expression in non-model fish, we identified and characterized the muscle-specific alpha-actin gene in olive flounder, Paralichthys olivaceus (PoACTC1). The regulatory region of PoACTC1 includes putative regulatory elements such as a TATA box, two MyoD binding sites, three CArG boxes, and a CCAAT box. Microinjection experiments demonstrated that the regulatory region of PoACTC1, covering from -2,126 bp to +751 bp, just prior to the start codon, drove the expression of red fluorescent protein in developing zebrafish embryos and hatching olive flounder. These results suggest that the regulatory region of PoACTC1 may be useful in developing a promoter for biotechnological applications such as transgene expression in olive flounder.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: