Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

Innate Color Preference of Zebrafish and Its Use in Behavioral Analyses.

  • Jong-Su Park‎ et al.
  • Molecules and cells‎
  • 2016‎

Although innate color preference of motile organisms may provide clues to behavioral biases, it has remained a longstanding question. In this study, we investigated innate color preference of zebrafish larvae. A cross maze with different color sleeves around each arm was used for the color preference test (R; red, G; green, B; blue, Y; yellow). The findings showed that 5 dpf zebrafish larvae preferred blue over other colors (B > R > G > Y). To study innate color recognition further, tyrosinase mutants were generated using CRISPR/Cas9 system. As a model for oculocutaneous albinism (OCA) and color vision impairment, tyrosinase mutants demonstrated diminished color sensation, indicated mainly by hypopigmentation of the retinal pigment epithelium (RPE). Due to its relative simplicity and ease, color preference screening using zebrafish larvae is suitable for high-throughput screening applications. This system may potentially be applied to the analysis of drug effects on larval behavior or the detection of sensory deficits in neurological disorder models, such as autism-related disorders, using mutant larvae generated by the CRISPR/Cas9 technique.


The presence of two rare genomic syndromes, 1q21 deletion and Xq28 duplication, segregating independently in a family with intellectual disability.

  • Kyungsoo Ha‎ et al.
  • Molecular cytogenetics‎
  • 2016‎

1q21 microdeletion syndrome is a rare contiguous gene deletion disorder with de novo or autosomal dominant inheritance patterns and its phenotypic features include intellectual disability, distinctive facial dysmorphism, microcephaly, cardiac abnormalities, and cataracts. MECP2 duplication syndrome is an X-linked recessive neurodevelopmental disorder characterized by intellectual disability, global developmental delay, and other neurological complications including late-onset seizures. Previously, these two different genetic syndromes have not been reported segregating independently in a same family.


Epb41l5 competes with Delta as a substrate for Mib1 to coordinate specification and differentiation of neurons.

  • Miho Matsuda‎ et al.
  • Development (Cambridge, England)‎
  • 2016‎

We identified Erythrocyte membrane protein band 4.1-like 5 (Epb41l5) as a substrate for the E3 ubiquitin ligase Mind bomb 1 (Mib1), which is essential for activation of Notch signaling. Although loss of Epb41l5 does not significantly alter the pattern of neural progenitor cells (NPCs) specified as neurons at the neural plate stage, it delays their delamination and differentiation after neurulation when NPCs normally acquire organized apical junctional complexes (AJCs) in the zebrafish hindbrain. Delays in differentiation are reduced by knocking down N-cadherin, a manipulation expected to help destabilize adherens junctions (AJs). This suggested that delays in neuronal differentiation in epb41l5-deficient embryos are related to a previously described role for Epb41l5 in facilitating disassembly of cadherin-dependent AJCs. Mib1 ubiquitylates Epb41l5 to promote its degradation. DeltaD can compete with Epb41l5 to reduce Mib1-dependent Epb41l5 degradation. In this context, increasing the number of NPCs specified to become neurons, i.e. cells expressing high levels of DeltaD, stabilizes Epb41l5 in the embryo. Together, these observations suggest that relatively high levels of Delta stabilize Epb41l5 in NPCs specified as neurons. This, we suggest, helps coordinate NPC specification with Epb41l5-dependent delamination and differentiation as neurons.


Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy.

  • Andrew G York‎ et al.
  • Nature methods‎
  • 2012‎

We demonstrate three-dimensional (3D) super-resolution in live multicellular organisms using structured illumination microscopy (SIM). Sparse multifocal illumination patterns generated by a digital micromirror device (DMD) allowed us to physically reject out-of-focus light, enabling 3D subdiffractive imaging in samples eightfold thicker than had been previously imaged with SIM. We imaged samples at one 2D image per second, at resolutions as low as 145 nm laterally and 400 nm axially. In addition to dual-labeled, whole fixed cells, we imaged GFP-labeled microtubules in live transgenic zebrafish embryos at depths >45 μm. We captured dynamic changes in the zebrafish lateral line primordium and observed interactions between myosin IIA and F-actin in cells encapsulated in collagen gels, obtaining two-color 4D super-resolution data sets spanning tens of time points and minutes without apparent phototoxicity. Our method uses commercially available parts and open-source software and is simpler than existing SIM implementations, allowing easy integration with wide-field microscopes.


Plausibility of the zebrafish embryos/larvae as an alternative animal model for autism: A comparison study of transcriptome changes.

  • Sangwoo Lee‎ et al.
  • PloS one‎
  • 2018‎

Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder characterized by impaired or abnormal social interaction and communication and by restricted and repetitive behaviour. ASD is highly prevalent in Asia, Europe, and the United States, and the frequency of ASD is growing each year. Recent epidemiological studies have indicated that ASD may be caused or triggered by exposure to chemicals in the environment, such as those in the air or water. Thus, toxicological studies are needed to examine chemicals that might be implicated. However, the experimental efficiency of existing experimental models is limited, and many models represent challenges in terms of animal welfare. Thus, alternative ASD animal models are necessary. To address this, we examined the efficacy of the zebrafish embryo/larva as an alternative model of ASD. Specifically, we exposed zebrafish to valproic acid (0, 12.5, 25, 50, or 100 μM), which is a chemical known to induce autism-like effects. We then analysed subsequent developmental, behavioural, and transcriptomic changes. We found that 100 μM and 50 μM valproic acid decreased the hatching rate and locomotor activity of zebrafish embryos/larvae. Transcriptomic analysis revealed significant alterations in a number of genes associated with autism, such as adsl, mbd5, shank3, and tsc1b. Additionally, we found changes in gene ontology that were also reported in previous studies. Our findings indicate that zebrafish embryos/larvae and humans with ASD might have common physiological pathways, indicating that this animal model may represent an alternative tool for examining the causes of and potential treatments for this illness.


The mechanistic insight of a specific interaction between 15d-Prostaglandin-J2 and eIF4A suggests an evolutionary conserved role across species.

  • So Jeong Yun‎ et al.
  • Biology open‎
  • 2018‎

15-deoxy-delta 12,14-prostaglandin J2 (15d-PGJ2) is an anti-inflammatory/anti-neoplastic prostaglandin that functions through covalent binding to cysteine residues of various target proteins. We previously showed that 15d-PGJ2 mediated anti-inflammatory responses are dependent on the translational inhibition through its interaction with eIF4A (Kim et al., 2007). Binding of 15d-PGJ2 to eIF4A specifically blocks the interaction between eIF4G and eIF4A, which leads to the formation of stress granules (SGs), which then cluster mRNAs with inhibited translation. Here, we show that the binding between 15d-PGJ2 and eIF4A specifically blocks the interaction between the MIF4G domain of eIF4G and eIF4A. To reveal the mechanism of this interaction, we used computational simulation-based docking studies and identified that the carboxyl tail of 15d-PGJ2 could stabilize the binding of 15d-PGJ2 to eIF4A through arginine 295 of eIF4A, which is the first suggestion that the 15d-PGJ2 tail plays a physiological role. Interestingly, the putative 15d-PGJ2 binding site on eiF4A is conserved across many species, suggesting a biological role. Our data propose that studying 15d-PGJ2 and its targets may uncover new therapeutic approaches in anti-inflammatory drug discovery.


Structural and Physiological Exploration of Salmonella Typhi YfdX Uncovers Its Dual Function in Bacterial Antibiotic Stress and Virulence.

  • Hye Seon Lee‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

YfdX is a prokaryotic protein encoded by several pathogenic bacteria including Salmonella enterica serovar Typhi, which causes one of the most fatal infectious diseases, typhoid fever. YfdX is a product of the yfdXWUVE operon and is known to be under the control of EvgA, a regulator protein controlling the expression of several proteins involved in response to environmental stress, in Escherichia coli. Nevertheless, unlike other proteins encoded by the same operon, the structural and physiological aspects of YfdX have been poorly characterized. Here, we identified a previously unknown pH-dependent stoichiometric conversion of S. Typhi YfdX between dimeric and tetrameric states; this conversion was further analyzed via determining its structure by X-ray crystallography at high resolution and by small-angle X-ray scattering in a solution state and via structure-based mutant studies. Biologically, YfdX was proven to be critically involved in Salmonella susceptibility to two β-lactam antibiotics, penicillin G and carbenicillin, as bacterial growth significantly impaired by its deficiency upon treatment with each of the two antibiotics was recovered by chromosomal complementation. Furthermore, by using Galleria mellonella larvae as an in vivo model of Salmonella infection, we demonstrated that Salmonella virulence was remarkably enhanced by YfdX deficiency, which was complemented by a transient expression of the wild-type or dimeric mutant but not by that of the monomeric mutant. The present study work provides direct evidence regarding the participation of YfdX in Salmonella antibiotic susceptibility and in the modulation of bacterial virulence, providing a new insight into this pathogen's strategies for survival and growth.


Generation of foxn1/Casper Mutant Zebrafish for Allograft and Xenograft of Normal and Malignant Cells.

  • Peng Lv‎ et al.
  • Stem cell reports‎
  • 2020‎

Cell transplantation into immunodeficient recipients is a widely used approach to study stem cell and cancer biology; however, studying cell states post transplantation in vivo is inconvenient in mammals. Here, we generated a foxn1/Casper mutant zebrafish that is transparent and exhibits T cell deficiency. By employing the line for hematopoietic stem cell (HSC) transplantation (HSCT), we could achieve nonconditioned transplantation. Meanwhile, we found that fetal HSCs from 3 days post fertilization zebrafish embryos produce a better transplant outcome in foxn1/Casper mutants, compared with adult HSCs. In addition to HSCT, the foxn1/Casper mutant is feasible for allografts of myelodysplastic syndrome-like and muscle cells, as well as xenografts of medaka muscle cells. In summary, foxn1/Casper mutants permit the nonconditioned engraftment of multiple cell types and visualized characterization of transplanted cells in vivo.


Zebrafish Posterior Lateral Line primordium migration requires interactions between a superficial sheath of motile cells and the skin.

  • Damian E Dalle Nogare‎ et al.
  • eLife‎
  • 2020‎

The Zebrafish Posterior Lateral Line primordium migrates in a channel between the skin and somites. Its migration depends on the coordinated movement of its mesenchymal-like leading cells and trailing cells, which form epithelial rosettes, or protoneuromasts. We describe a superficial population of flat primordium cells that wrap around deeper epithelialized cells and extend polarized lamellipodia to migrate apposed to the overlying skin. Polarization of lamellipodia extended by both superficial and deeper protoneuromast-forming cells depends on Fgf signaling. Removal of the overlying skin has similar effects on superficial and deep cells: lamellipodia are lost, blebs appear instead, and collective migration fails. When skinned embryos are embedded in Matrigel, basal and superficial lamellipodia are recovered; however, only the directionality of basal protrusions is recovered, and migration is not rescued. These observations support a key role played by superficial primordium cells and the skin in directed migration of the Posterior Lateral Line primordium.


Comparative Genomic Mapping Implicates LRRK2 for Intellectual Disability and Autism at 12q12, and HDHD1, as Well as PNPLA4, for X-Linked Intellectual Disability at Xp22.31.

  • Jonathan D J Labonne‎ et al.
  • Journal of clinical medicine‎
  • 2020‎

We report a genomic and phenotypic delineation for two chromosome regions with candidate genes for syndromic intellectual disability at 12q12 and Xp22.31, segregating independently in one family with four affected members. Fine mapping of three affected members, along with six unreported small informative CNVs, narrowed down the candidate chromosomal interval to one gene LRRK2 at 12q12. Expression studies revealed high levels of LRRK2 transcripts in the whole human brain, cerebral cortex and hippocampus. RT-qPCR assays revealed that LRRK2 transcripts were dramatically reduced in our microdeletion patient DGDP289A compared to his healthy grandfather with no deletion. The decreased expression of LRRK2 may affect protein-protein interactions between LRRK2 and its binding partners, of which eight have previously been linked to intellectual disability. These findings corroborate with a role for LRRK2 in cognitive development, and, thus, we propose that intellectual disability and autism, displayed in the 12q12 microdeletions, are likely caused by LRRK2. Using another affected member, DGDP289B, with a microdeletion at Xp22.31, in this family, we performed the genomic and clinical delineation with six published and nine unreported cases. We propose HDHD1 and PNPLA4 for X-linked intellectual disability in this region, since their high transcript levels in the human brain substantiate their role in intellectual functioning.


Optogenetic Manipulation of Olfactory Responses in Transgenic Zebrafish: A Neurobiological and Behavioral Study.

  • Yun-Mi Jeong‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Olfaction is an important neural system for survival and fundamental behaviors such as predator avoidance, food finding, memory formation, reproduction, and social communication. However, the neural circuits and pathways associated with the olfactory system in various behaviors are not fully understood. Recent advances in optogenetics, high-resolution in vivo imaging, and reconstructions of neuronal circuits have created new opportunities to understand such neural circuits. Here, we generated a transgenic zebrafish to manipulate olfactory signal optically, expressing the Channelrhodopsin (ChR2) under the control of the olfactory specific promoter, omp. We observed light-induced neuronal activity of olfactory system in the transgenic fish by examining c-fos expression, and a calcium indicator suggesting that blue light stimulation caused activation of olfactory neurons in a non-invasive manner. To examine whether the photo-activation of olfactory sensory neurons affect behavior of zebrafish larvae, we devised a behavioral choice paradigm and tested how zebrafish larvae choose between two conflicting sensory cues, an aversive odor or the naturally preferred phototaxis. We found that when the conflicting cues (the preferred light and aversive odor) were presented together simultaneously, zebrafish larvae swam away from the aversive odor. However, the transgenic fish with photo-activation were insensitive to the aversive odor and exhibited olfactory desensitization upon optical stimulation of ChR2. These results show that an aversive olfactory stimulus can override phototaxis, and that olfaction is important in decision making in zebrafish. This new transgenic model will be useful for the analysis of olfaction related behaviors and for the dissection of underlying neural circuits.


Mapping Molecular Networks within Clitoria ternatea Linn. against LPS-Induced Neuroinflammation in Microglial Cells, with Molecular Docking and In Vivo Toxicity Assessment in Zebrafish.

  • Nurul Farah Adni Mat Zian‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2022‎

Clitoria ternatea Linn. (CT), or butterfly pea, is an Ayurvedic plant traditionally used as a brain tonic. Recently, it was reported to be of use in treating central nervous system (CNS) disorders, i.e., as an antistress treatment and antidepressant. In the present study, we report a detailed phytochemical profile of the ethyl acetate fraction of the flower of CT (CTF_EA) with significant neuroprotective and anti-neuroinflammatory properties in both LPS-activated BV-2 and SK-N-SH cells. Concurrently, the molecular network (MN) derived from the CTF_EA metabolome allows putative identification of flavonol 3-O-glycosides, hydrocinnamic acids, and primary metabolites. Molecular docking studies suggest that CTF_EA preferentially targets iNOS, resulting in a decrease in nitric oxide (NO). Furthermore, no toxic effects on normal embryonic development, blood vessel formation, and apoptosis are observed when CTF_EA is tested for in vivo toxicity in zebrafish models. The overall preliminary results suggest the anti-neuroinflammatory and neuroprotective effects of CT and provide scientific support for the efficacy of this medicinal plant at local and traditional levels. However, studies on the targeted isolation of bioactive metabolites, in-depth pharmacological efficacy, and safety in mammalian models are urgently needed to expand our understanding of this plant before it is developed into a promising therapeutic agent for brain-related diseases.


Embryonic Arsenic Exposure Triggers Long-Term Behavioral Impairment with Metabolite Alterations in Zebrafish.

  • Noraini Abu Bakar‎ et al.
  • Toxics‎
  • 2022‎

Arsenic trioxide (As2O3) is a ubiquitous heavy metal in the environment. Exposure to this toxin at low concentrations is unremarkable in developing organisms. Nevertheless, understanding the underlying mechanism of its long-term adverse effects remains a challenge. In this study, embryos were initially exposed to As2O3 from gastrulation to hatching under semi-static conditions. Results showed dose-dependent increased mortality, with exposure to 30-40 µM As2O3 significantly reducing tail-coiling and heart rate at early larval stages. Surviving larvae after 30 µM As2O3 exposure showed deficits in motor behavior without impairment of anxiety-like responses at 6 dpf and a slight impairment in color preference behavior at 11 dpf, which was later evident in adulthood. As2O3 also altered locomotor function, with a loss of directional and color preference in adult zebrafish, which correlated with changes in transcriptional regulation of adsl, shank3a, and tsc1b genes. During these processes, As2O3 mainly induced metabolic changes in lipids, particularly arachidonic acid, docosahexaenoic acid, prostaglandin, and sphinganine-1-phosphate in the post-hatching period of zebrafish. Overall, this study provides new insight into the potential mechanism of arsenic toxicity leading to long-term learning impairment in zebrafish and may benefit future risk assessments of other environmental toxins of concern.


Impairments of cerebellar structure and function in a zebrafish KO of neuropsychiatric risk gene znf536.

  • Tae-Yoon Kim‎ et al.
  • Translational psychiatry‎
  • 2024‎

Genetic variants in ZNF536 contribute to the risk for neuropsychiatric disorders such as schizophrenia, autism, and others. The role of this putative transcriptional repressor in brain development and function is, however, largely unknown. We generated znf536 knockout (KO) zebrafish and studied their behavior, brain anatomy, and brain function. Larval KO zebrafish showed a reduced ability to compete for food, resulting in decreased total body length and size. This phenotype can be rescued by segregating the homozygous KO larvae from their wild-type and heterozygous siblings, enabling studies of adult homozygous KO animals. In adult KO zebrafish, we observed significant reductions in anxiety-like behavior and social interaction. These znf536 KO zebrafish have decreased cerebellar volume, corresponding to decreased populations of specific neuronal cells, especially in the valvular cerebelli (Va). Finally, using a Tg[mbp:mgfp] line, we identified a previously undetected myelin structure located bilaterally within the Va, which also displayed a reduction in volume and disorganization in KO zebrafish. These findings indicate an important role for ZNF536 in brain development and implicate the cerebellum in the pathophysiology of neuropsychiatric disorders.


Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome.

  • Mi-Ae Jang‎ et al.
  • American journal of human genetics‎
  • 2015‎

Singleton-Merten syndrome (SMS) is an autosomal-dominant multi-system disorder characterized by dental dysplasia, aortic calcification, skeletal abnormalities, glaucoma, psoriasis, and other conditions. Despite an apparent autosomal-dominant pattern of inheritance, the genetic background of SMS and information about its phenotypic heterogeneity remain unknown. Recently, we found a family affected by glaucoma, aortic calcification, and skeletal abnormalities. Unlike subjects with classic SMS, affected individuals showed normal dentition, suggesting atypical SMS. To identify genetic causes of the disease, we performed exome sequencing in this family and identified a variant (c.1118A>C [p.Glu373Ala]) of DDX58, whose protein product is also known as RIG-I. Further analysis of DDX58 in 100 individuals with congenital glaucoma identified another variant (c.803G>T [p.Cys268Phe]) in a family who harbored neither dental anomalies nor aortic calcification but who suffered from glaucoma and skeletal abnormalities. Cys268 and Glu373 residues of DDX58 belong to ATP-binding motifs I and II, respectively, and these residues are predicted to be located closer to the ADP and RNA molecules than other nonpathogenic missense variants by protein structure analysis. Functional assays revealed that DDX58 alterations confer constitutive activation and thus lead to increased interferon (IFN) activity and IFN-stimulated gene expression. In addition, when we transduced primary human trabecular meshwork cells with c.803G>T (p.Cys268Phe) and c.1118A>C (p.Glu373Ala) mutants, cytopathic effects and a significant decrease in cell number were observed. Taken together, our results demonstrate that DDX58 mutations cause atypical SMS manifesting with variable expression of glaucoma, aortic calcification, and skeletal abnormalities without dental anomalies.


Deficiency of a brain-specific chemokine-like molecule, SAM3, induces cardinal phenotypes of autism spectrum disorders in mice.

  • Sujin Kim‎ et al.
  • Scientific reports‎
  • 2017‎

Chemokines are small secreted signaling proteins produced by a broad range of cells, including immune cells. Several studies have recently suggested potential roles of chemokines and their receptors in the pathophysiology of autism spectrum disorders (ASDs). SAM3 is a novel brain-specific chemokine-like molecule with an unknown physiological function. We explored the relevance of chemokines in the development of ASD in mice, with a focus on SAM3. We generated Sam3 gene knockout (KO) mice and characterized their behavioral phenotypes, with a focus on those relevant to ASD. Sam3-deficient mice displayed all three core phenotypes of ASD: impaired responses to social novelty, defects in social communication, and increased repetitive behavior. In addition, they showed increased anxiety. Interestingly, gender differences were identified for several behaviors: only male Sam3 KO mice exhibited increased anxiety and increased repetitive behaviors. Sam3 KO mice did not exhibit changes in other behaviors, including locomotor activities, fear learning and memory, and object recognition memory. These findings indicate that a deficiency of SAM3, a novel brain-specific chemokine-like molecule, may lead to the pathogenesis of ASDs and suggest the possibility that SAM3, a soluble factor, could be a novel therapeutic target for ASD treatment.


WDR11, a WD protein that interacts with transcription factor EMX1, is mutated in idiopathic hypogonadotropic hypogonadism and Kallmann syndrome.

  • Hyung-Goo Kim‎ et al.
  • American journal of human genetics‎
  • 2010‎

By defining the chromosomal breakpoint of a balanced t(10;12) translocation from a subject with Kallmann syndrome and scanning genes in its vicinity in unrelated hypogonadal subjects, we have identified WDR11 as a gene involved in human puberty. We found six patients with a total of five different heterozygous WDR11 missense mutations, including three alterations (A435T, R448Q, and H690Q) in WD domains important for β propeller formation and protein-protein interaction. In addition, we discovered that WDR11 interacts with EMX1, a homeodomain transcription factor involved in the development of olfactory neurons, and that missense alterations reduce or abolish this interaction. Our findings suggest that impaired pubertal development in these patients results from a deficiency of productive WDR11 protein interaction.


Isolation and expression of Napor/CUG-BP2 in embryo development.

  • Dong-Kug Choi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

The human neuroblastoma apoptosis-related RNA-binding protein NAPOR is an ELAV-like RNA-binding protein with three characteristic RNA recognition motifs (RRMs). We report here the cloning and characterization of a zebrafish Napor that has a high sequence homology to human NAPOR protein. Whole-mount in situ hybridization analysis revealed that zebrafish napor is dynamically expressed in early development. In addition to its maternal expression, napor transcripts were detected in adaxial mesoderm cells and lateral neural plate cells at early somite stages. By 10-somite stage, napor expression was restricted to the central nervous system, having a specific expression domain of rhombomere 5 in the hindbrain. In 24 hpf embryo, napor was expressed in subsets of differentiating neural cells in the forebrain and hindbrain as well as somitic muscle cells. The number of napor-expressing neural cells was greatly increased in the mind bomb mutant that has neurogenic phenotype resulting from deficits in the Notch signaling pathway. Furthermore, overexpression of napor by RNA microinjection resulted in severe defects in nervous system and gastrulation, suggesting the need for tight control of napor gene regulation during embryo development.


Zath3, a neural basic helix-loop-helix gene, regulates early neurogenesis in the zebrafish.

  • Su-Hyeon Park‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

We have isolated a basic helix-loop-helix (bHLH) gene homologous to the Drosophila proneural gene atonal, termed zath3, from zebrafish. zath3 is expressed in neurons of the central nervous system and in subsets of cranial ganglia. Zebrafish mindbomb (mib) mutants have a higher density of zath3 expressing cells and narrowminded (nrd) mutants lack zath3 expression in a domain corresponding to primary sensory neurons showing that the expression of zath3 is regulated by both mib and nrd. Injection of synthetic zath3 RNA into zebrafish embryos expands the neural plate size, promotes ectopic expression of neuronal markers, and partially rescues the deficit of sensory neurons seen in nrd mutants. Interfering with zath3 function using antisense morpholino oligonucleotides (MO) has no significant effect on early neurogenesis. However, a double knock down of zath3 and neurogenin1 (ngn1), another atonal homologue, with morpholinos (MOs) leads to more severe defects in neurogenesis than are seen with ngn1 MO alone: a subtle reduction of motor and inter-neurons, and an almost complete loss all cranial ganglia. This study suggests that zath3 and ngn1 have partially overlapping roles in early neurogenesis.


An obligatory role of mind bomb-1 in notch signaling of mammalian development.

  • Bon-Kyoung Koo‎ et al.
  • PloS one‎
  • 2007‎

The Notch signaling pathway is an evolutionarily conserved intercellular signaling module essential for cell fate specification that requires endocytosis of Notch ligands. Structurally distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), cooperatively regulate the endocytosis of Notch ligands in Drosophila. However, the respective roles of the mammalian E3 ubiquitin ligases, Neur1, Neur2, Mib1, and Mib2, in mammalian development are poorly understood.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: