Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 51 papers

Integrative analysis of transcriptomics and clinical data uncovers the tumor-suppressive activity of MITF in prostate cancer.

  • Lorea Valcarcel-Jimenez‎ et al.
  • Cell death & disease‎
  • 2018‎

The dysregulation of gene expression is an enabling hallmark of cancer. Computational analysis of transcriptomics data from human cancer specimens, complemented with exhaustive clinical annotation, provides an opportunity to identify core regulators of the tumorigenic process. Here we exploit well-annotated clinical datasets of prostate cancer for the discovery of transcriptional regulators relevant to prostate cancer. Following this rationale, we identify Microphthalmia-associated transcription factor (MITF) as a prostate tumor suppressor among a subset of transcription factors. Importantly, we further interrogate transcriptomics and clinical data to refine MITF perturbation-based empirical assays and unveil Crystallin Alpha B (CRYAB) as an unprecedented direct target of the transcription factor that is, at least in part, responsible for its tumor-suppressive activity in prostate cancer. This evidence was supported by the enhanced prognostic potential of a signature based on the concomitant alteration of MITF and CRYAB in prostate cancer patients. In sum, our study provides proof-of-concept evidence of the potential of the bioinformatics screen of publicly available cancer patient databases as discovery platforms, and demonstrates that the MITF-CRYAB axis controls prostate cancer biology.


Metabolic alterations in urine extracellular vesicles are associated to prostate cancer pathogenesis and progression.

  • Marc Clos-Garcia‎ et al.
  • Journal of extracellular vesicles‎
  • 2018‎

Urine contains extracellular vesicles (EVs) that concentrate molecules and protect them from degradation. Thus, isolation and characterisation of urinary EVs could increase the efficiency of biomarker discovery. We have previously identified proteins and RNAs with differential abundance in urinary EVs from prostate cancer (PCa) patients compared to benign prostate hyperplasia (BPH). Here, we focused on the analysis of the metabolites contained in urinary EVs collected from patients with PCa and BPH. Targeted metabolomics analysis of EVs was performed by ultra-high-performance liquid chromatography-mass spectrometry. The correlation between metabolites and clinical parameters was studied, and metabolites with differential abundance in PCa urinary EVs were detected and mapped into cellular pathways. We detected 248 metabolites belonging to different chemical families including amino acids and various lipid species. Among these metabolites, 76 exhibited significant differential abundance between PCa and BPH. Interestingly, urine EVs recapitulated many of the metabolic alterations reported in PCa, including phosphathidylcholines, acyl carnitines, citrate and kynurenine. Importantly, we found elevated levels of the steroid hormone, 3beta-hydroxyandros-5-en-17-one-3-sulphate (dehydroepiandrosterone sulphate) in PCa urinary EVs, in line with the potential elevation of androgen synthesis in this type of cancer. This work supports urinary EVs as a non-invasive source to infer metabolic changes in PCa.


Genetic association study of dyslexia and ADHD candidate genes in a Spanish cohort: Implications of comorbid samples.

  • Mirian Sánchez-Morán‎ et al.
  • PloS one‎
  • 2018‎

Dyslexia and attention deficit hyperactivity disorder (ADHD) are two complex neuro-behaviorally disorders that co-occur more often than expected, so that reading disability has been linked to inattention symptoms. We examined 4 SNPs located on genes previously associated to dyslexia (KIAA0319, DCDC2, DYX1C1 and FOXP2) and 3 SNPs within genes related to ADHD (COMT, MAOA and DBH) in a cohort of Spanish children (N = 2078) that met the criteria of having one, both or none of these disorders (dyslexia and ADHD). We used a case-control approach comparing different groups of samples based on each individual diagnosis. In addition, we also performed a quantitative trait analysis with psychometric measures on the general population (N = 3357). The results indicated that the significance values for some markers change depending on the phenotypic groups compared and/or when considering pair-wise marker interactions. Furthermore, our quantitative trait study showed significant genetic associations with specific cognitive processes. These outcomes advocate the importance of establishing rigorous and homogeneous criteria for the diagnosis of cognitive disorders, as well as the relevance of considering cognitive endophenotypes.


Genetic manipulation of LKB1 elicits lethal metastatic prostate cancer.

  • Ivana Hermanova‎ et al.
  • The Journal of experimental medicine‎
  • 2020‎

Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkb1 alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1K78I, was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination.


PI3K-regulated Glycine N-methyltransferase is required for the development of prostate cancer.

  • Amaia Zabala-Letona‎ et al.
  • Oncogenesis‎
  • 2022‎

Glycine N-Methyltransferase (GNMT) is a metabolic enzyme that integrates metabolism and epigenetic regulation. The product of GNMT, sarcosine, has been proposed as a prostate cancer biomarker. This enzyme is predominantly expressed in the liver, brain, pancreas, and prostate tissue, where it exhibits distinct regulation. Whereas genetic alterations in GNMT have been associated to prostate cancer risk, its causal contribution to the development of this disease is limited to cell line-based studies and correlative human analyses. Here we integrate human studies, genetic mouse modeling, and cellular systems to characterize the regulation and function of GNMT in prostate cancer. We report that this enzyme is repressed upon activation of the oncogenic Phosphoinositide-3-kinase (PI3K) pathway, which adds complexity to its reported dependency on androgen signaling. Importantly, we demonstrate that expression of GNMT is required for the onset of invasive prostate cancer in a genetic mouse model. Altogether, our results provide further support of the heavy oncogenic signal-dependent regulation of GNMT in prostate cancer.


Defining a Methylation Signature Associated With Operational Tolerance in Kidney Transplant Recipients.

  • Ramon M Rodriguez‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Operational tolerance after kidney transplantation is defined as stable graft acceptance without the need for immunosuppression therapy. However, it is not clear which cellular and molecular pathways are driving tolerance in these patients. We performed genome-wide analysis of DNA methylation in peripheral blood mononuclear cells from kidney transplant recipients with chronic rejection and operational tolerance from the Genetic Analysis of Molecular Biomarkers of Immunological Tolerance (GAMBIT) study. Our results showed that both clinical stages diverge in 2737 genes, indicating that each one has a specific methylation signature associated with transplant outcome. We also observed that tolerance is associated with demethylation in genes involved in immune function, including B and T cell activation and Th17 differentiation, while in chronic rejection it is associated with intracellular signaling and ubiquitination pathways. Using co-expression network analysis, we selected 12 genomic regions that are specifically hypomethylated or hypermethylated in tolerant patients. Analysis of these genes in transplanted patients with low dose of steroids showed that these have a similar methylation signature to that of tolerant recipients. Overall, these results demonstrate that methylation analysis can mirror the immune status associated with transplant outcome and provides a starting point for understanding the epigenetic mechanisms associated with tolerance.


SALL1 Modulates CBX4 Stability, Nuclear Bodies, and Regulation of Target Genes.

  • Immacolata Giordano‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Development is orchestrated through a complex interplay of multiple transcription factors. The comprehension of this interplay will help us to understand developmental processes. Here we analyze the relationship between two key transcription factors: CBX4, a member of the Polycomb Repressive Complex 1 (PRC1), and SALL1, a member of the Spalt-like family with important roles in embryogenesis and limb development. Both proteins localize to nuclear bodies and are modified by the small ubiquitin-like modifier (SUMO). Our results show that CBX4 and SALL1 interact in the nucleoplasm and that increased SALL1 expression reduces ubiquitination of CBX4, enhancing its stability. This is accompanied by an increase in the number and size of CBX4-containing Polycomb bodies, and by a greater repression of CBX4 target genes. Thus, our findings uncover a new way of SALL1-mediated regulation of Polycomb bodies through modulation of CBX4 stability, with consequences in the regulation of its target genes, which could have an impact in cell differentiation and development.


miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments.

  • Michael Hackenberg‎ et al.
  • Nucleic acids research‎
  • 2011‎

We present a new version of miRanalyzer, a web server and stand-alone tool for the detection of known and prediction of new microRNAs in high-throughput sequencing experiments. The new version has been notably improved regarding speed, scope and available features. Alignments are now based on the ultrafast short-read aligner Bowtie (granting also colour space support, allowing mismatches and improving speed) and 31 genomes, including 6 plant genomes, can now be analysed (previous version contained only 7). Differences between plant and animal microRNAs have been taken into account for the prediction models and differential expression of both, known and predicted microRNAs, between two conditions can be calculated. Additionally, consensus sequences of predicted mature and precursor microRNAs can be obtained from multiple samples, which increases the reliability of the predicted microRNAs. Finally, a stand-alone version of the miRanalyzer that is based on a local and easily customized database is also available; this allows the user to have more control on certain parameters as well as to use specific data such as unpublished assemblies or other libraries that are not available in the web server. miRanalyzer is available at http://bioinfo2.ugr.es/miRanalyzer/miRanalyzer.php.


Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves.

  • Jose A Gomez-Sanchez‎ et al.
  • The Journal of cell biology‎
  • 2015‎

Although Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell-mediated myelin digestion possible have not been established. We report that Schwann cells degrade myelin after injury by a novel form of selective autophagy, myelinophagy. Autophagy was up-regulated by myelinating Schwann cells after nerve injury, myelin debris was present in autophagosomes, and pharmacological and genetic inhibition of autophagy impaired myelin clearance. Myelinophagy was positively regulated by the Schwann cell JNK/c-Jun pathway, a central regulator of the Schwann cell reprogramming induced by nerve injury. We also present evidence that myelinophagy is defective in the injured central nervous system. These results reveal an important role for inductive autophagy during Wallerian degeneration, and point to potential mechanistic targets for accelerating myelin clearance and improving demyelinating disease.


ITGA4 polymorphisms and susceptibility to multiple sclerosis.

  • Catherine O'Doherty‎ et al.
  • Journal of neuroimmunology‎
  • 2007‎

In multiple sclerosis (MS), alpha(4)beta(1) integrin, also known as Very Late Antigen 4 (VLA4), facilitates migration of leukocytes across the blood brain barrier. Several studies suggest that expression of alpha(4) integrin may be increased in MS patients compared to controls, and down-regulation or antagonism of alpha(4) integrin may be associated with immunomodulatory treatment success. We analysed association of 13 single nucleotide polymorphisms (SNPs) in the gene encoding alpha(4) integrin (ITGA4) with susceptibility to MS in two distinct populations comprising cases and controls from the Basque Country in northern Spain (352 patients; 235 controls) and Nordic countries (1119 patients; 1235 controls). Carriage of the C allele of the ITGA4 promoter SNP rs1449263 was independently and weakly increased in MS patients from each population compared to respective controls (P = 0.037 in Basque; and P = 0.042 in Nordic cohorts), though these associations were lost upon application of permutation correction. Meta-analysis of rs1449263*C carriage revealed a Mantel-Haenszel common OR of 1.26 (95% CI 1.06-1.49; P = 0.0069). Though our data only modestly argue for a role of ITGA4 in determining susceptibility to MS, we suggest that further examination of this gene, particularly the promoter region, is warranted.


Targeting PML in triple negative breast cancer elicits growth suppression and senescence.

  • Leire Arreal‎ et al.
  • Cell death and differentiation‎
  • 2020‎

Oncogene addiction postulates that the survival and growth of certain tumor cells is dependent upon the activity of one oncogene, despite their multiple genetic and epigenetic abnormalities. This phenomenon provides a foundation for molecular targeted therapy and a rationale for oncogene-based stratification. We have previously reported that the Promyelocytic Leukemia protein (PML) is upregulated in triple negative breast cancer (TNBC) and it regulates cancer-initiating cell function, thus suggesting that this protein can be therapeutically targeted in combination with PML-based stratification. However, the effects of PML perturbation on the bulk of tumor cells remained poorly understood. Here we demonstrate that TNBC cells are addicted to the expression of this nuclear protein. PML inhibition led to a remarkable growth arrest combined with features of senescence in vitro and in vivo. Mechanistically, the growth arrest and senescence were associated to a decrease in MYC and PIM1 kinase levels, with the subsequent accumulation of CDKN1B (p27), a trigger of senescence. In line with this notion, we found that PML is associated to the promoter regions of MYC and PIM1, consistent with their direct correlation in breast cancer specimens. Altogether, our results provide a feasible explanation for the functional similarities of MYC, PIM1, and PML in TNBC and encourage further study of PML targeting strategies for the treatment of this breast cancer subtype.


mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer.

  • Amaia Zabala-Letona‎ et al.
  • Nature‎
  • 2017‎

Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation. Here we show that mechanistic target of rapamycin complex 1 (mTORC1) regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. By using integrative metabolomics in a mouse model and human biopsies of prostate cancer, we identify alterations in tumours affecting the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation is validated in mouse and human cancer specimens. AMD1 is upregulated in human prostate cancer with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus exhibit a predominant decrease in AMD1 immunoreactivity that is associated with a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program.


Stratification and therapeutic potential of PML in metastatic breast cancer.

  • Natalia Martín-Martín‎ et al.
  • Nature communications‎
  • 2016‎

Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification.


Absent in Melanoma 2 (AIM2) Regulates the Stability of Regulatory T Cells.

  • Beatriz Lozano-Ruiz‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Absent in melanoma 2 (AIM2) is a cytosolic dsDNA sensor that has been broadly studied for its role in inflammasome assembly. However, little is known about the function of AIM2 in adaptive immune cells. The purpose of this study was to investigate whether AIM2 has a cell-intrinsic role in CD4+ T cell differentiation or function. We found that AIM2 is expressed in both human and mouse CD4+ T cells and that its expression is affected by T cell receptor (TCR) activation. Naïve CD4+ T cells from AIM2-deficient (Aim2-/-) mice showed higher ability to maintain forkhead box P3 (FOXP3) expression in vitro, while their capacity to differentiate into T helper (Th)1, Th2 or Th17 cells remained unaltered. Transcriptional profiling by RNA sequencing showed that AIM2 might affect regulatory T cell (Treg) stability not by controlling the expression of Treg signature genes, but through the regulation of the cell's metabolism. In addition, in a T cell transfer model of colitis, Aim2-/--naïve T cells induced less severe body weight loss and displayed a higher ability to differentiate into FOXP3+ cells in vivo. In conclusion, we show that AIM2 function is not confined to innate immune cells but is also important in CD4+ T cells. Our data identify AIM2 as a regulator of FOXP3+ Treg cell differentiation and as a potential intervention target for restoring T cell homeostasis.


MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis.

  • David Fernández-Ramos‎ et al.
  • Cell death & disease‎
  • 2018‎

Glycine N-methyltransferase (GNMT) is the most abundant methyltransferase in the liver and a master regulator of the transmethylation flux. GNMT downregulation leads to loss of liver function progressing to fibrosis, cirrhosis, and hepatocellular carcinoma. Moreover, GNMT deficiency aggravates cholestasis-induced fibrogenesis. To date, little is known about the mechanisms underlying downregulation of GNMT levels in hepatic fibrosis and cirrhosis. On this basis, microRNAs are epigenetic regulatory elements that play important roles in liver pathology. In this work, we aim to study the regulation of GNMT by microRNAs during liver fibrosis and cirrhosis. Luciferase assay on the 3'UTR-Gnmt was used to confirm in silico analysis showing that GNMT is potentially targeted by the microRNA miR-873-5p. Correlation between GNMT and miR-873-5p in human cholestasis and cirrhosis together with miR-873-5p inhibition in vivo in different mouse models of liver cholestasis and fibrosis [bile duct ligation and Mdr2 (Abcb4)-/- mouse] were then assessed. The analysis of liver tissue from cirrhotic and cholestatic patients, as well as from the animal models, showed that miR-873-5p inversely correlated with the expression of GNMT. Importantly, high circulating miR-873-5p was also detected in cholestastic and cirrhotic patients. Preclinical studies with anti-miR-873-5p treatment in bile duct ligation and Mdr2-/- mice recovered GNMT levels in association with ameliorated inflammation and fibrosis mainly by counteracting hepatocyte apoptosis and cholangiocyte proliferation. In conclusion, miR-873-5p emerges as a novel marker for liver fibrosis, cholestasis, and cirrhosis and therapeutic approaches based on anti-miR-873-5p may be effective treatments for liver fibrosis and cholestatic liver disease.


Long Non-Coding RNA Signatures in the Ileum and Colon of Crohn's Disease Patients and Effect of Anti-TNF-α Treatment on Their Modulation.

  • Montse Baldan-Martin‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Biological therapies only benefit one-third of patients with Crohn's disease (CD). For this reason, a deeper understanding of the mechanisms by which biologics elicit their effect on intestinal mucosa is needed. Increasing evidence points toward the involvement of long noncoding RNAs (lncRNAs) in the pathogenesis of CD, although their role remains poorly studied. We aimed to characterize lncRNA profiles in the ileum and colon from CD patients and evaluate the effect of anti-TNF-α treatment on their transcription. Terminal ileum and left colon samples from 30 patients (active CD = 10, quiescent CD = 10, and healthy controls (HCs) = 10) were collected for RNA-seq. The patients were classified according to endoscopic activity. Furthermore, biopsies were cultured with infliximab, and their transcriptome was determined by Illumina gene expression array. A total of 678 differentially expressed lncRNAs between the terminal ileum and left colon were identified in HCs, 438 in patients with quiescent CD, and 468 in patients with active CD. Additionally, we identified three new lncRNAs in the ileum associated with CD activity. No differences were observed when comparing the effect of infliximab according to intestinal location, presence of disease (CD vs. HC), and activity (active vs. quiescent). The expression profiles of lncRNAs are associated with the location of intestinal tissue, being very different in the ileum and colon. The presence of CD and disease activity are associated with the differential expression of lncRNAs. No modulatory effect of infliximab has been observed in the lncRNA transcriptome.


Regulation of the transcriptional program by DNA methylation during human αβ T-cell development.

  • Ramon M Rodriguez‎ et al.
  • Nucleic acids research‎
  • 2015‎

Thymocyte differentiation is a complex process involving well-defined sequential developmental stages that ultimately result in the generation of mature T-cells. In this study, we analyzed DNA methylation and gene expression profiles at successive human thymus developmental stages. Gain and loss of methylation occurred during thymocyte differentiation, but DNA demethylation was much more frequent than de novo methylation and more strongly correlated with gene expression. These changes took place in CpG-poor regions and were closely associated with T-cell differentiation and TCR function. Up to 88 genes that encode transcriptional regulators, some of whose functions in T-cell development are as yet unknown, were differentially methylated during differentiation. Interestingly, no reversion of accumulated DNA methylation changes was observed as differentiation progressed, except in a very small subset of key genes (RAG1, RAG2, CD8A, PTCRA, etc.), indicating that methylation changes are mostly unique and irreversible events. Our study explores the contribution of DNA methylation to T-cell lymphopoiesis and provides a fine-scale map of differentially methylated regions associated with gene expression changes. These can lay the molecular foundations for a better interpretation of the regulatory networks driving human thymopoiesis.


Phenotypic characteristics of aged CD4+ CD28null T lymphocytes are determined by changes in the whole-genome DNA methylation pattern.

  • Beatriz Suarez-Álvarez‎ et al.
  • Aging cell‎
  • 2017‎

Aging is associated with a progressive loss of the CD28 costimulatory molecule in CD4+ lymphocytes (CD28null T cells), which is accompanied by the acquisition of new biological and functional properties that give rise to an impaired immune response. The regulatory mechanisms that govern the appearance and function of this cell subset during aging and in several associated inflammatory disorders remain controversial. Here, we present the whole-genome DNA methylation and gene expression profiles of CD28null T cells and its CD28+ counterpart. A comparative analysis revealed that 296 genes are differentially methylated between the two cell subsets. A total of 160 genes associated with cytotoxicity (e.g. GRZB, TYROBP, and RUNX3) and cytokine/chemokine signaling (e.g. CX3CR1, CD27, and IL-1R) are demethylated in CD28null T cells, while 136 de novo-methylated genes matched defects in the TCR signaling pathway (e.g. ITK, TXK, CD3G, and LCK). TCR-landscape analysis confirmed that CD28null T cells have an oligo/monoclonal expansion over the polyclonal background of CD28+ T cells, but feature a Vβ family repertoire specific to each individual. We reported that CD28null T cells show a preactivation state characterized by a higher level of expression of inflammasome-related genes that leads to the release of IL-1β when activated. Overall, our results demonstrate that CD28null T cells have a unique DNA methylation landscape, which is associated with differences in gene expression, contributing to the functionality of these cells. Understanding these epigenetic regulatory mechanisms could suggest novel therapeutic strategies to prevent the accumulation and activation of these cells during aging.


VerSeDa: vertebrate secretome database.

  • Ana R Cortazar‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2017‎

Based on the current tools, de novo secretome (full set of proteins secreted by an organism) prediction is a time consuming bioinformatic task that requires a multifactorial analysis in order to obtain reliable in silico predictions. Hence, to accelerate this process and offer researchers a reliable repository where secretome information can be obtained for vertebrates and model organisms, we have developed VerSeDa (Vertebrate Secretome Database). This freely available database stores information about proteins that are predicted to be secreted through the classical and non-classical mechanisms, for the wide range of vertebrate species deposited at the NCBI, UCSC and ENSEMBL sites. To our knowledge, VerSeDa is the only state-of-the-art database designed to store secretome data from multiple vertebrate genomes, thus, saving an important amount of time spent in the prediction of protein features that can be retrieved from this repository directly.


The metabolic co-regulator PGC1α suppresses prostate cancer metastasis.

  • Veronica Torrano‎ et al.
  • Nature cell biology‎
  • 2016‎

Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: