Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 47 papers

Auranofin Inhibits Retinal Pigment Epithelium Cell Survival through Reactive Oxygen Species-Dependent Epidermal Growth Factor Receptor/ Mitogen-Activated Protein Kinase Signaling Pathway.

  • Xiaodong Chen‎ et al.
  • PloS one‎
  • 2016‎

Abnormal survival of retinal pigment epithelium (RPE) cells contributes to the pathogenesis of proliferative vitreoretinopathy (PVR), a sight-threatening disease. In this study, we explored the effect of the anti-rheumatic agent auranofin (AF) on RPE cell survival and studied the underlying signaling mechanisms in vitro. Our results showed that AF inhibited ARPE-19 cell survival in a dose and time-dependent manner. Application of AF induced several effects: a significant decrease in total epidermal growth factor receptor (EGFR) and an increase in phosphorylated EGFR and mitogen-activated protein kinase (MAPK), including extracellular signal-regulated kinase (ERK), P38 mitogen-activated protein kinase (P38MAPK), c-Jun N-terminal kinase (JNK), c-Jun, mitogen activated protein kinase activated protein kinase 2(MAPKAPK2), and heat shock protein 27 (HSP27). AF also inhibited epidermal growth factor (EGF)-dependent cell proliferation and migration through affecting EGFR/MAPK signaling. The antioxidant N-acetylcysteine (NAC) blocked the AF-induced increase of reactive oxygen species (ROS) production, the reduction of total EGFR, and the phosphorylation of multiple nodes in EGFR/MAPK signaling pathway. P38MAPK inhibitor SB203580, but not inhibitors of EGFR (erlotinib), ERK (FR180204) and JNK (SP600125), suppressed AF-induced phosphorylation of EGFR/p38MAPK/MAPKAPK2/Hsp27. In conclusion, the ROS-dependent phosphorylation of EGFR/MAPK is an important signaling pathway for AF-induced inhibition of RPE cell survival, and AF may have the potential for treatment of abnormal survival of RPE cells in PVR.


Anti-Alzheimer's Studies on β-Sitosterol Isolated from Polygonum hydropiper L.

  • Muhammad Ayaz‎ et al.
  • Frontiers in pharmacology‎
  • 2017‎

The family Polygonaceae is known for its traditional use in the management of various neurological disorders including Alzheimer's disease (AD). In search of new anti-AD drugs, β-sitosterol isolated from Polygonum hydropiper was subjected to in vitro, in vivo, behavioral and molecular docking studies to confirm its possibility as a potential anti-Alzheimer's agent. The in vitro AChE, BChE inhibitory potentials of β-sitosterol were investigated following Ellman's assay. The antioxidant activity was tested using DPPH, ABTS and H2O2 assays. Behavioral studies were performed on a sub-strain of transgenic mice using shallow water maze (SWM), Y-maze and balance beam tests. β-sitosterol was tested for in vivo inhibitory potentials against cholinesterase's and free radicals in the frontal cortex (FC) and hippocampus (HC). The molecular docking study was performed to predict the binding mode of β-sitosterol in the active sites of AChE and BChE as inhibitor. Considerable in vitro and in vivo cholinesterase inhibitory effects were observed in the β-sitosterol treated groups. β-sitosterol exhibited an IC50 value of 55 and 50 μg/ml against AChE and BChE respectively. Whereas, the activity of these enzymes were significantly low in FC and HC homogenates of transgenic animals. Molecular docking studies also support the binding of β-sitosterol with the target enzyme and further support the in vitro and in vivo results. In the antioxidant assays, the IC50 values were observed as 140, 120, and 280 μg/ml in the DPPH, ABTS and H2O2 assays respectively. The free radicals load in the brain tissues was significantly declined in the β-sitosterol treated animals as compared to the transgenic-saline treated groups. In the memory assessment and coordination tasks including SWM, Y-maze and balance beam tests, β-sitosterol treated transgenic animals showed gradual improvement in working memory, spontaneous alternation behavior and motor coordination. These results conclude that β-sitosterol is a potential compound for the management of memory deficit disorders like AD.


Structure of p300 bound to MEF2 on DNA reveals a mechanism of enhanceosome assembly.

  • Ju He‎ et al.
  • Nucleic acids research‎
  • 2011‎

Transcription co-activators CBP and p300 are recruited by sequence-specific transcription factors to specific genomic loci to control gene expression. A highly conserved domain in CBP/p300, the TAZ2 domain, mediates direct interaction with a variety of transcription factors including the myocyte enhancer factor 2 (MEF2). Here we report the crystal structure of a ternary complex of the p300 TAZ2 domain bound to MEF2 on DNA at 2.2Å resolution. The structure reveals three MEF2:DNA complexes binding to different sites of the TAZ2 domain. Using structure-guided mutations and a mammalian two-hybrid assay, we show that all three interfaces contribute to the binding of MEF2 to p300, suggesting that p300 may use one of the three interfaces to interact with MEF2 in different cellular contexts and that one p300 can bind three MEF2:DNA complexes simultaneously. These studies, together with previously characterized TAZ2 complexes bound to different transcription factors, demonstrate the potency and versatility of TAZ2 in protein-protein interactions. Our results also support a model wherein p300 promotes the assembly of a higher-order enhanceosome by simultaneous interactions with multiple DNA-bound transcription factors.


Pharmacological Evaluation of Aldehydic-Pyrrolidinedione Against HCT-116, MDA-MB231, NIH/3T3, MCF-7 Cancer Cell Lines, Antioxidant and Enzyme Inhibition Studies.

  • Ashfaq Ahmad‎ et al.
  • Drug design, development and therapy‎
  • 2019‎

The current work was designed to synthesize a bioactive derivative of succinimide and evaluate it for anti-Alzheimer, anticancer and anti-diabetic potentials.


Comparative Cholinesterase, α-Glucosidase Inhibitory, Antioxidant, Molecular Docking, and Kinetic Studies on Potent Succinimide Derivatives.

  • Ashfaq Ahmad‎ et al.
  • Drug design, development and therapy‎
  • 2020‎

The current study was designed to synthesize derivatives of succinimide and compare their biological potency in anticholinesterase, alpha-glucosidase inhibition, and antioxidant assays.


The Staphylococcus aureus cell division protein, DivIC, interacts with the cell wall and controls its biosynthesis.

  • Mariana Tinajero-Trejo‎ et al.
  • Communications biology‎
  • 2022‎

Bacterial cell division is a complex, dynamic process that requires multiple protein components to orchestrate its progression. Many division proteins are highly conserved across bacterial species alluding to a common, basic mechanism. Central to division is a transmembrane trimeric complex involving DivIB, DivIC and FtsL in Gram-positives. Here, we show a distinct, essential role for DivIC in division and survival of Staphylococcus aureus. DivIC spatially regulates peptidoglycan synthesis, and consequently cell wall architecture, by influencing the recruitment to the division septum of the major peptidoglycan synthetases PBP2 and FtsW. Both the function of DivIC and its recruitment to the division site depend on its extracellular domain, which interacts with the cell wall via binding to wall teichoic acids. DivIC facilitates the spatial and temporal coordination of peptidoglycan synthesis with the developing architecture of the septum during cell division. A better understanding of the cell division mechanisms in S. aureus and other pathogenic microorganisms can provide possibilities for the development of new, more effective treatments for bacterial infections.


Phytomedicine-Based Potent Antioxidant, Fisetin Protects CNS-Insult LPS-Induced Oxidative Stress-Mediated Neurodegeneration and Memory Impairment.

  • Ashfaq Ahmad‎ et al.
  • Journal of clinical medicine‎
  • 2019‎

Phytomedicine based natural flavonoids have potent antioxidant, anti-inflammatory, and neuroprotective activities against neurodegenerative diseases. The aim of the present study is to investigate the potent neuroprotective and antioxidant potential effects of fisetin (natural flavonoid) against central nervous system (CNS)-insult, lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), neuroinflammation, neurodegeneration, and synaptic/memory deficits in adult mice. The mice were injected intraperitoneally (i.p.) with LPS (250 μg/kg/day for 1 week) and a fisetin dosage regimen (20 mg/kg/day i.p. for 2 weeks, 1 week pre-treated to LPS and 1 week co-treated with LPS). Behavioral tests, and biochemical and immunofluorescence assays were applied. Our results revealed that fisetin markedly abrogated the LPS-induced elevated ROS/oxidative stress and activated phosphorylated c-JUN N-terminal Kinase (p-JNK) in the adult mouse hippocampus. Fisetin significantly alleviated LPS-induced activated gliosis. Moreover, fisetin treatment inhibited LPS-induced activation of the inflammatory Toll-like Receptors (TLR4)/cluster of differentiation 14 (CD14)/phospho-nuclear factor kappa (NF-κB) signaling and attenuated other inflammatory mediators (tumor necrosis factor-α (TNF-α), interleukin-1 β (IL1-β), and cyclooxygenase (COX-2). Furthermore, immunoblotting and immunohistochemical results revealed that fisetin significantly reversed LPS-induced apoptotic neurodegeneration. Fisetin improved the hippocampal-dependent synaptic and memory functions in LPS-treated adult mice. In summary, our results strongly recommend that fisetin, a natural potent antioxidant, and neuroprotective phytomedicine, represents a promising, valuable, and therapeutic candidate for the prevention and treatment of neurodegenerative diseases.


Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models.

  • Mubashra Yasin‎ et al.
  • Environmental science and pollution research international‎
  • 2022‎

Future climate scenarios are predicting considerable threats to sustainable maize production in arid and semi-arid regions. These adverse impacts can be minimized by adopting modern agricultural tools to assess and develop successful adaptation practices. A multi-model approach (climate and crop) was used to assess the impacts and uncertainties of climate change on maize crop. An extensive field study was conducted to explore the temporal thermal variations on maize hybrids grown at farmer's fields for ten sowing dates during two consecutive growing years. Data about phenology, morphology, biomass development, and yield were recorded by adopting standard procedures and protocols. The CSM-CERES, APSIM, and CSM-IXIM-Maize models were calibrated and evaluated. Five GCMs among 29 were selected based on classification into different groups and uncertainty to predict climatic changes in the future. The results predicted that there would be a rise in temperature (1.57-3.29 °C) during the maize growing season in five General Circulation Models (GCMs) by using RCP 8.5 scenarios for the mid-century (2040-2069) as compared with the baseline (1980-2015). The CERES-Maize and APSIM-Maize model showed lower root mean square error values (2.78 and 5.41), higher d-index (0.85 and 0.87) along reliable R2 (0.89 and 0.89), respectively for days to anthesis and maturity, while the CSM-IXIM-Maize model performed well for growth parameters (leaf area index, total dry matter) and yield with reasonably good statistical indices. The CSM-IXIM-Maize model performed well for all hybrids during both years whereas climate models, NorESM1-M and IPSL-CM5A-MR, showed less uncertain results for climate change impacts. Maize models along GCMs predicted a reduction in yield (8-55%) than baseline. Maize crop may face a high yield decline that could be overcome by modifying the sowing dates and fertilizer (fertigation) and heat and drought-tolerant hybrids.


Translation and validation of urdu version short form-mcgill pain questionnaire-2.

  • Amna Sharif‎ et al.
  • BMC sports science, medicine & rehabilitation‎
  • 2023‎

Low back pain is one of the most common complaints affecting many individuals. The McGill Pain Questionnaire is used in various clinical settings to assess different types of pain and one of the most extensively used outcomes measures for pain in the world. The purpose of this study was to translate and validate the original English version of the SF-MPQ-2 into Urdu (SF-MPQ-2-U).


Anti-nucleocapsid IgG antibodies in SARS-CoV-2 recovered health care workers: One year follow-up study.

  • Ashfaq Ahmad‎ et al.
  • International journal of immunopathology and pharmacology‎
  • 2023‎

Objective: The objective of this study was to evaluate the magnitude and durability of the anti-nucleocapsid-IgG antibody titer in healthcare workers previously infected with SARS-CoV-2 for a period of 12 months.Methods: This study examined blood samples for SARS-CoV-2-specific IgG collected periodically from 120 healthcare workers previously infected with SARS-CoV-2 (confirmed by RT-PCR) and followed longitudinally up to 12 months from their enrolment into the study.Results: The median anti-N-IgG antibody level identified at 3 months was 23.7 CO-index (IQR: 9.13-50.27) and increased to 32.9 CO-index (IQR: 11.8-84.4) at 6 months. At 9 months, the median anti-N-IgG antibody level started to wane in the subsequent time and was dropped to 14 CO-index (IQR: 3.4-37.6) and declined further to 9.8 CO-index at 12 months (IQR: 2.8-9.8). When classified by age groups, the only statistically significant difference in anti-N-IgG between the two age groups (≤30 years and >30 years) was identified at 12 month time point (median difference 8.06, p = 0.035). Spearman correlation coefficient was negatively associated between anti-N-IgG and time interval (r = -0.255, p = 0.000) but was not statistically significant with age of a patient (p > 0.05).Conclusions: In conclusion, SARS-CoV-2 antibody levels started declining after 6 months but remained detectable in the majority of patients up to 12 months.


Pine cone extract as natural coagulant for purification of turbid water.

  • Sajid Hussain‎ et al.
  • Heliyon‎
  • 2019‎

Turbidity is a characteristic impurity of groundwater in Pakistan. Turbid water is not suitable for drinking purposes. The main objective of this study is to reduce water turbidity using natural coagulant, extracted from pine cones. The coagulation activity of coagulant is tested using synthetic turbid water. Coagulant activity is affected by various factors such as coagulant dose, water turbidity, pH, extract density and settling time. The optimum coagulant dose and water turbidities are fixed; 0.5 ml/L, 67, and 75 NTU, respectively. The highest coagulation activities are observed at pH values 2 and 12. Further, coagulation activity of pine cone extract is maximized to 82% when its density is 1.8 g/cm3. Moreover, most of the coagulation activity takes place in the first hour. The results recommend the potential use of pine cone extract for turbid water purification.


Antihyperlipidemic and Antioxidant Effects of Averrhoa Carambola Extract in High-Fat Diet-Fed Rats.

  • Saleem H Aladaileh‎ et al.
  • Biomedicines‎
  • 2019‎

The present study explored the antihyperlipidemic potential of a standardized methanolic extract of Averrhoa carambola (A. carambola) leaf (MEACL) in high-fat diet (HFD)-fed rats. The standardized MEACL was orally administered at different doses (250, 500, and 1000 mg/kg) to HFD-induced hyperlipidemic rats for five weeks. Serum lipid profile, body weight changes, body mass index (BMI), daily food intake, relative organ weight, and histology of the liver were evaluated. In addition, the effect of MEACL on HMG-CoA reductase and pancreatic lipase activities as well as hepatic and fecal lipids was demonstrated. MEACL supplementation reduced serum lipids in HFD-fed rats in a dose-dependent manner. Histopathological scores revealed that 1000 mg/kg MEACL restored the damage to liver tissue in hyperlipidemic rats. MEACL decreased the body mass index (BMI), atherogenic index, and hepatic cholesterol and triglycerides and increased fecal cholesterol and bile acids in HFD-fed rats. Also, MEACL ameliorated lipid peroxidation and improved antioxidant defenses in the liver of HFD-fed rats. Furthermore, HMG-CoA reductase and lipase were suppressed by MEACL. In conclusion, this study shows the potential effect of MEACL to ameliorate hyperlipidemia and oxidative stress in HFD-fed rats. It prevented hepatic lipid accumulation and exerted an inhibitory effect on HMG-CoA reductase and lipase.


Up Regulation of cystathione γ lyase and Hydrogen Sulphide in the Myocardium Inhibits the Progression of Isoproterenol-Caffeine Induced Left Ventricular Hypertrophy in Wistar Kyoto Rats.

  • Ashfaq Ahmad‎ et al.
  • PloS one‎
  • 2016‎

Hydrogen sulphide (H2S) is an emerging molecule in many cardiovascular complications but its role in left ventricular hypertrophy (LVH) is unknown. The present study explored the effect of exogenous H2S administration in the regression of LVH by modulating oxidative stress, arterial stiffness and expression of cystathione γ lyase (CSE) in the myocardium. Animals were divided into four groups: Control, LVH, Control-H2S and LVH-H2S. LVH was induced by administering isoprenaline (5mg/kg, every 72 hours, S/C) and caffeine in drinking water (62mg/L) for 2 weeks. Intraperitoneal NaHS, 56μM/kg/day for 5 weeks, was given as an H2S donor. Myocardial expression of Cystathione γ lyase (CSE) mRNA was quantified using real time polymerase chain reaction (qPCR).There was a 3 fold reduction in the expression of myocardial CSE mRNA in LVH but it was up regulated by 7 and 4 fold in the Control-H2S and LVH-H2S myocardium, respectively. Systolic blood pressure, mean arterial pressure, pulse wave velocity were reduced (all P<0.05) in LVH-H2S when compared to the LVH group. Heart, LV weight, myocardial thickness were reduced while LV internal diameter was increased (all P<0.05) in the LVH-H2S when compared to the LVH group. Exogenous administration of H2S in LVH increased superoxide dismutase, glutathione and total antioxidant capacity but significantly reduced (all P<0.05) plasma malanodialdehyde in the LVH-H2S compared to the LVH group. The renal cortical blood perfusion increased by 40% in LVH-H2S as compared to the LVH group. Exogenous administration of H2S suppressed the progression of LVH which was associated with an up regulation of myocardial CSE mRNA/ H2S and a reduction in pulse wave velocity with a blunting of systemic hemodynamic. This CSE/H2S pathway exhibits an antihypertrophic role by antagonizing the hypertrophic actions of angiotensin II(Ang II) and noradrenaline (NA) but attenuates oxidative stress and improves pulse wave velocity which helps to suppress LVH. Exogenous administration of H2S augmented the reduced renal cortical blood perfusion in the LVH state.


Mechanistic insights revealed by the crystal structure of a histidine kinase with signal transducer and sensor domains.

  • Chen Wang‎ et al.
  • PLoS biology‎
  • 2013‎

Two-component systems (TCSs) are important for the adaptation and survival of bacteria and fungi under stress conditions. A TCS is often composed of a membrane-bound sensor histidine kinase (SK) and a response regulator (RR), which are relayed through sequential phosphorylation steps. However, the mechanism for how an SK is switched on in response to environmental stimuli remains obscure. Here, we report the crystal structure of a complete cytoplasmic portion of an SK, VicK from Streptococcus mutans. The overall structure of VicK is a long-rod dimer that anchors four connected domains: HAMP, Per-ARNT-SIM (PAS), DHp, and catalytic and ATP binding domain (CA). The HAMP, a signal transducer, and the PAS domain, major sensor, adopt canonical folds with dyad symmetry. In contrast, the dimer of the DHp and CA domains is asymmetric because of different helical bends in the DHp domain and spatial positions of the CA domains. Moreover, a conserved proline, which is adjacent to the phosphoryl acceptor histidine, contributes to helical bending, which is essential for the autokinase and phosphatase activities. Together, the elegant architecture of VicK with a signal transducer and sensor domain suggests a model where DHp helical bending and a CA swing movement are likely coordinated for autokinase activation.


Inhibition of the function of class IIa HDACs by blocking their interaction with MEF2.

  • Nimanthi Jayathilaka‎ et al.
  • Nucleic acids research‎
  • 2012‎

Enzymes that modify the epigenetic status of cells provide attractive targets for therapy in various diseases. The therapeutic development of epigenetic modulators, however, has been largely limited to direct targeting of catalytic active site conserved across multiple members of an enzyme family, which complicates mechanistic studies and drug development. Class IIa histone deacetylases (HDACs) are a group of epigenetic enzymes that depends on interaction with Myocyte Enhancer Factor-2 (MEF2) for their recruitment to specific genomic loci. Targeting this interaction presents an alternative approach to inhibiting this class of HDACs. We have used structural and functional approaches to identify and characterize a group of small molecules that indirectly target class IIa HDACs by blocking their interaction with MEF2 on DNA.Weused X-ray crystallography and (19)F NMRto show that these compounds directly bind to MEF2. We have also shown that the small molecules blocked the recruitment of class IIa HDACs to MEF2-targeted genes to enhance the expression of those targets. These compounds can be used as tools to study MEF2 and class IIa HDACs in vivo and as leads for drug development.


Structure-guided optimization of D-captopril for discovery of potent NDM-1 inhibitors.

  • Guixing Ma‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2021‎

β-lactam antibiotics have long been the mainstay for the treatment of bacterial infections. New Delhi metallo-β-lactamase 1 (NDM-1) is able to hydrolyze nearly all β-lactam antibiotics and even clinically used serine-β-lactamase inhibitors. The wide and rapid spreading of NDM-1 gene among pathogenic bacteria has attracted extensive attention, therefore high potency NDM-1 inhibitors are urgently needed. Here we report a series of structure-guided design of D-captopril derivatives that can inhibit the activity of NDM-1 in vitro and at cellular levels. Structural comparison indicates the mechanisms of inhibition enhancement and provides insights for further inhibitor optimization.


Hydrogen Sulphide Treatment Prevents Renal Ischemia-Reperfusion Injury by Inhibiting the Expression of ICAM-1 and NF-kB Concentration in Normotensive and Hypertensive Rats.

  • Syed F Hashmi‎ et al.
  • Biomolecules‎
  • 2021‎

Our main objective was to investigate the effect of chronic administration of hydrogen sulphide donor (sodium hydrosulphide) on the expression of intercellular adhesion molecule-1 (ICAM-1) and concentration of nuclear factor-kappa B (NF-kB) in a renal ischemia-reperfusion injury (IRI) model of WKY and L-nitro-arginine-methyl-ester (L-NAME)-induced hypertensive rats. Sodium hydrosulphide (NaHS) was administered intraperitoneally (i.p.) for 35 days while cystathionine gamma lyase (CSE) inhibitor dL-propargylglycine (PAG) was administered at a single dose of 50 mg/kg. Animals were anesthetised using sodium pentobarbitone (60 mg/kg) and then prepared to induce renal ischemia by clamping the left renal artery for 30 min followed by 3 h of reperfusion. Pre-treatment with NaHS improved the renal functional parameters in both WKY and L-NAME-induced hypertensive rats along with reduction of blood pressure in hypertensive groups. Oxidative stress markers like malondialdehyde (MDA), total superoxide dismutase (T-SOD) and glutathione (GSH) were also improved by NaHS treatment following renal IRI. Levels of ICAM-1 and NF-kB concentration were reduced by chronic treatment with NaHS and increased by PAG administration after renal IRI in plasma and kidney. Treatment with NaHS improved tubular morphology and glomerulus hypertrophy. Pre-treatment with NaHS reduced the degree of renal IRI by potentiating its antioxidant and anti-inflammatory mechanism, as evidenced by decreased NF-kB concentration and downregulation of ICAM-1 expression.


Eichhornia crassipes Ameliorated Rheumatoid Arthritis by Modulating Inflammatory Cytokines and Metalloproteinase Enzymes in a Rat Model.

  • Sara Sattar‎ et al.
  • Medicina (Kaunas, Lithuania)‎
  • 2023‎

Background and Objectives: This study was planned to investigate the anti-arthritic property of flowers of E. crassipes in a Sprague-Dawley rat model by administering Freund's Complete Adjuvant (FCA). Materials and Methods: Arthritis was induced at day 0 in all rats except negative controls, while arthritic progress and paw edema were analyzed on specific days (8th, 13th, 18th, and 23rd) via the macroscopic arthritic scale and a digital Vernier caliper, respectively. Histopathological parameters were examined using a Hematoxylin and Eosin (H&E) staining method. Blood samples were withdrawn from rats to investigate the effects of the E. crassipes flower on the mRNA expression values of inflammatory markers, via a reverse transcription PCR technique. Serum samples were used to determine prostaglandin E2 (PGE2) levels using enzyme-linked immunosorbent assay (ELISA). Values of alanine transaminase (ALT), aspartate aminotransferase (AST), creatinine, and urea, besides hematological parameters, i.e., the hemoglobin (Hb) content and complete blood count (CBC), were investigated. Results: The data showed that E. crassipes inhibited the arthritic progress and ameliorated the paw edema. The amelioration of parameters assessed via the histopathological analysis of ankle joints, as well as via hematological analysis, confirmed the diminution of rheumatoid arthritis (RA) in the plant-treated groups. Treatment with E. crassipes inhibited the expression levels of tumor necrosis factor-α (TNF-α), interleukins (IL-1β and IL-6), nuclear factor KappaB (NF-κB), matrix metalloproteinase (MMP-2 and MMP-3), and vascular endothelial growth factor (VEGF). Serum PGE2 levels were also found to be reduced in treatment groups. A biochemical investigation revealed the improvements in hepatic markers in plant-treated groups. The data indicated that the plant has no hepatotoxic or nephrotoxic effects at the studied dose. GC-MS (Gas Chromatography-Mass Spectrometry) analysis displayed the presence of phytochemicals having known anti-inflammatory and antioxidant properties. Conclusions: Therefore, it may be concluded that E. crassipes possesses anti-arthritic characteristics that could be attributed to the modulation of pro-inflammatory cytokines, MMPs, and PGE2 levels.


Formulation and Preparation of Losartan-Potassium-Loaded Controlled-Release Matrices Using Ethocel Grade 10 to Establish a Correlation between In Vitro and In Vivo Results.

  • Kamran Ahmad Khan‎ et al.
  • Pharmaceutics‎
  • 2024‎

In the current study, matrices of losartan potassium were formulated with two different polymers (Ethocel 10 premium and Ethocel 10FP premium), along with a filler and a lubricant, at different drug-to-polymer w/w ratios (10:3, 10:4, and 10:5). The matrices were tested by the direct compression method, and their hardness, diameter, thickness, friability, weight variation, content uniformity, and in vitro dissolution tests were assessed to determine 24-h drug release rates. The matrices with Ethocel 10 FP at a 10:4 ratio exhibited pseudo-zero-order kinetics (n-value of 0.986), while the dissolution data of the test matrices and reference tablets did not match. The new test-optimized matrices were also tested in rabbits, and their pharmacokinetic parameters were investigated: half-life (11.78 ± 0.018 h), Tmax (2.105 ± 1.131 h), Cmax (205.98 ± 0.321 μg/mL), AUCo (5931.10 ± 1.232 μg·h/mL), AUCo-inf (7348.46 ± 0.234 μg·h/mL), MRTo-48h (17.34 ± 0.184 h), and Cl (0.002 ± 0.134 mL/min). A correlation value of 0.985 between the in vitro and in vivo results observed for the test-optimized matrices was observed, indicating a level-A correlation between the percentage of the drug released in vitro and the percentage of the drug absorbed in vivo. The matrices might improve patient compliance with once-a-day dosing and therapeutic outcomes.


Cystathione gamma lyase/Hydrogen Sulphide Pathway Up Regulation Enhances the Responsiveness of α1A and α1B-Adrenoreceptors in the Kidney of Rats with Left Ventricular Hypertrophy.

  • Ashfaq Ahmad‎ et al.
  • PloS one‎
  • 2016‎

The purpose of the present study was to investigate the interaction between H2S and NO (nitric oxide) in the kidney and to evaluate its impact on the functional contribution of α1A and α1B-adrenoreceptors subtypes mediating the renal vasoconstriction in the kidney of rats with left ventricular hypertrophy (LVH). In rats the LVH induction was by isoprenaline administration and caffeine in the drinking water together with intraperitoneal administration of H2S. The responsiveness of α1A and α1B to exogenous noradrenaline, phenylephrine and methoxaminein the absence and presence of 5-methylurapidil (5-MeU) and chloroethylclonidine (CEC) was studied. Cystathione gamma lyase (CSE), cystathione β synthase (CBS), 3-mercaptopyruvate sulphar transferase (3-MST) and endothelial nitric oxide synthase (eNOS) were quantified. There was significant up regulation of CSE and eNOS in the LVH-H2S compared to the LVH group (P<0.05). Baseline renal cortical blood perfusion (RCBP) was increased (P<0.05) in the LVH-H2S compared to the LVH group. The responsiveness of α1A-adrenergic receptors to adrenergic agonists was increased (P<0.05) after administration of low dose 5-Methylurapidil in the LVH-H2S group while α1B-adrenergic receptors responsiveness to adrenergic agonists were increased (P<0.05) by both low and high dose chloroethylclonidine in the LVH-H2S group. Treatment of LVH with H2S resulted in up-regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways in the kidney. These up regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways enhanced the responsiveness of α1A and α1B-adrenoreceptors subtypes to adrenergic agonists in LVH-H2S. These findings indicate an important role for H2S in modulating deranged signalling in the renal vasculature resulting from LVH development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: