Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system.

  • Jesús M López‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2010‎

The relationship between dopaminergic neuronal structures and dopaminoceptive structures in the amphibian brain and spinal cord are assessed by means of single and double immunohistochemical techniques with antibodies directed against DARPP-32 (a phosphoprotein related to the dopamine D(1)-receptor) and tyrosine hydroxylase (TH) applied to the brain of the anurans Rana perezi and Xenopus laevis. The DARPP-32 antibody yielded a well-differentiated pattern of staining in the brain of these anurans. In general, areas that are densely innervated by TH-immunoreactive fibers such as the nucleus accumbens, striatum, amygdaloid complex, thalamus, optic tectum, torus semicircularis and spinal cord display a remarkable immunoreactivity for DARPP-32 in cell bodies and neuropil. Distinct cellular DARPP-32 immunoreactivity was also found in the septum, preoptic area, suprachiasmatic nucleus, tuberal hypothalamic region, habenula, retina, midbrain tegmentum, rhombencephalic reticular formation and solitary tract nucleus. Hodological data supported that striatal projection neurons were DARPP-32 immunoreactive. Double immunohistofluorescence staining revealed that catecholaminergic cells generally do not stain for DARPP-32, except for some cells in the ventral mesencephalic tegmentum of Xenopus and cells in the nucleus of the solitary tract of Rana. Several interspecies differences were noted for the DARPP-32 distribution in the brain of the two anurans, namely in the habenula, the thalamus and prethalamus, the cerebellum and octavolateral area and the structures with DARPP-32/TH colocalization. However, in general, the distribution of DARPP-32 in the brain of the anuran amphibians resembles in many aspects the pattern observed in amniotes, especially in reptiles.


Immunohistochemical localization of thyrotropin-releasing hormone in the brain of reptiles.

  • Jesús M López‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2008‎

To gain insight into the evolution of the thyrotropin-releasing hormone (TRH) system in the brain of vertebrates we have conducted a comparative analysis of the distribution of TRH immunoreactive cell bodies and fibers in two reptiles, the turtle Pseudemys scripta elegans and the lizard Gekko gecko. Double labeling for TRH and tyrosine hydroxylase, the main catecholamine marker, was made to help the correct localization of the labeled structures and to evaluate the possible interaction of these two systems. Cells containing TRH were found in the hypothalamic paraventricular and periventricular nuclei and their projections to the median eminence were corroborated. In addition, with some species variation, extrahypothalamic cells were present in the medial amygdala, mesencephalic tegmentum, descending vestibular nucleus and in the retina. Fiber labeling was observed in all main brain subdivisions but was more abundant in regions such as the striatum, septum, amygdaloid complex, dorsal thalamus and tegmento-reticular zones. Actual colocalization of TRH and catecholamines in the same neurons was not observed but the codistribution of cells and fibers labeled for TRH and tyrosine hydroxylase strongly suggests that they can interact in diverse regions, not only in the hypothalamo-hypophysial system. The comparison of the distribution of TRH immunoreactive neurons and fibers found in reptiles with those reported for other vertebrates reveals a strong resemblance but also notable variations, not only across vertebrate classes but also within the same class.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: