Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Understanding Transcription Factors and How They Affect Processes in Cucumber Sex Determination.

  • Szymon Turek‎ et al.
  • Metabolites‎
  • 2023‎

Plant reproduction is a fundamental process on Earth from the perspective of biodiversity, biomass gain, and crop productivity. It is therefore important to understand the sex determination process, and many researchers are investigating the molecular basis of this phenomenon. However, information on the influence of transcription factors (TFs), genes that encode DNA-binding proteins, on this process is limited, although cucumber is a model plant in this regard. In the present study, based on RNA-seq data for differentially expressed genes (DEGs), we aimed to investigate the regulatory TFs that may influence the metabolic processes in the shoot apex containing the forming flower buds. Therefore, the annotation of the genome of the B10 cucumber line was supplemented with the assigned families of transcription factors. By performing ontology analyses of the DEGs, the processes they participate in were identified, and TFs were located among the results. In addition, TFs that have significantly overrepresented targets among DEGs were detected, and sex-specific interactome network maps were generated, indicating the regulatory TFs based on their effects on DEGs and furthermore, on the processes leading to the formation of different-sex flowers. Among the most overrepresented TF families in the sex comparisons were the NAC, bHLH, MYB, and bZIP families. An interaction network analysis indicated the most abundant families among DEGs' regulatory TFs were MYB, AP2/ERF, NAC, and bZIP, and those with the most significant impact on developmental processes were identified, namely the AP/ERF family, followed by DOF, MYB, MADS, and others. Thus, the networks' central nodes and key regulators were identified with respect to male, female, and hermaphrodite forms. Here, we proposed the first model of the regulatory network of TFs that influences the metabolism of sex development in cucumber. These findings may help us to understand the molecular genetics and functional mechanisms underlying sex determination processes.


Comparative transcriptome analysis reveals new molecular pathways for cucumber genes related to sex determination.

  • Magdalena Pawełkowicz‎ et al.
  • Plant reproduction‎
  • 2019‎

Transcriptome data and qPCR analysis revealed new insight into genes regulatory mechanism related to cucumber sex determination. Cucumber (Cucumis sativus L.) is an economically important crop cultivated worldwide. Enhancing the genomic resources for cucumber may enable the regulation of traits relevant to crop productivity and quality. Sequencing technologies and bioinformatics tools provide opportunities for the development of such resources. The aims of this study were to identify and characterize the genes involved in sex determination and flower morphogenesis in cucumber isogenic lines that differed regarding flower sex type. We obtained transcripts for 933 genes related to shoot apex development, among which 310 were differentially expressed genes (DEGs) among the male, female, and hermaphroditic lines. We performed gene ontology and molecular network analyses and explored the DEGs related to already known processes like: hormone synthesis and signaling, lipid and sugar metabolism; and also newly discovered processes related to cell wall, membrane, and cytoskeleton modifications; ion homeostasis which appears to be important for ethylene perception and signaling, and genes expression mediated by transcription factors related to floral organ identities. We proposed a new model of regulatory mechanism network of sex development in cucumber. Our results may be useful for clarifying the molecular genetics and the functional mechanisms underlying the sex determination processes.


Transcriptome Analyses of Mosaic (MSC) Mitochondrial Mutants of Cucumber in a Highly Inbred Nuclear Background.

  • Tomasz L Mróz‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2018‎

Cucumber (Cucumis sativus L.) has a large, paternally transmitted mitochondrial genome. Cucumber plants regenerated from cell cultures occasionally show paternally transmitted mosaic (MSC) phenotypes, characterized by slower growth, chlorotic patterns on the leaves and fruit, lower fertility, and rearrangements in their mitochondrial DNAs (mtDNAs). MSC lines 3, 12, and 16 originated from different cell cultures all established using the highly inbred, wild-type line B. These MSC lines possess different rearrangements and under-represented regions in their mtDNAs. We completed RNA-seq on normalized and non-normalized cDNA libraries from MSC3, MSC12, and MSC16 to study their nuclear gene-expression profiles relative to inbred B. Results from both libraries indicated that gene expression in MSC12 and MSC16 were more similar to each other than MSC3. Forty-one differentially expressed genes (DEGs) were upregulated and one downregulated in the MSC lines relative to B. Gene functional classifications revealed that more than half of these DEGs are associated with stress-response pathways. Consistent with this observation, we detected elevated levels of hydrogen peroxide throughout leaf tissue in all MSC lines compared to wild-type line B. These results demonstrate that independently produced MSC lines with different mitochondrial polymorphisms show unique and shared nuclear responses. This study revealed genes associated with stress response that could become selection targets to develop cucumber cultivars with increased stress tolerance, and further support of cucumber as a model plant to study nuclear-mitochondrial interactions.


Genome-wide discovery of DNA variants in cucumber somaclonal lines.

  • Agnieszka Skarzyńska‎ et al.
  • Gene‎
  • 2020‎

The emergence of somaclonal variability in in vitro cultures is undesirable during micropropagation, but this phenomenon may be a source of genetic variability sought by breeders. The main factors that affect the appearance of variability are known, but the exact mechanism has not yet been determined. In this paper, we used next-generation sequencing and comparative genomics to study changes in the genomes of cucumber lines resulting from in vitro regeneration and somaclonal mutation in comparison to a reference, the highly inbred B10 line. The total number of obtained polymorphisms differed between the three somaclonal lines S1, S2 and S3, with 8369, 7591 and 44510, respectively. Polymorphisms occurred most frequently in non-coding regions and were mainly SNPs. High-impact changes accounted for 1%-3% of all polymorphisms and most often caused an open reading frame shift. Functional analysis of genes affected by high impact variants showed that they were related to transport, biosynthetic processes, nucleotide-containing compounds and cellular protein modification processes. The obtained results indicated significant factors affecting somaclonal variability and the appearance of changes in the genome, and demonstrated a lack of dependence between phenotype and the number of genomic polymorphisms.


Insight into the Organization of the B10v3 Cucumber Genome by Integration of Biological and Bioinformatic Data.

  • Szymon Turek‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The availability of a well-organized and annotated reference genome is essential for genome research and the analysis of re-sequencing approaches. The B10v3 cucumber (Cucumis sativus L.) reference genome has been sequenced and assembled into 8035 contigs, a small fraction of which have been mapped to individual chromosomes. Currently, bioinformatics methods based on comparative homology have made it possible to re-order the sequenced contigs by mapping them to the reference genomes. The B10v3 genome (North-European, Borszczagowski line) was rearranged against the genomes of cucumber 9930 ('Chinese Long' line) and Gy14 (North American line). Furthermore, a better insight into the organization of the B10v3 genome was obtained by integrating the data available in the literature on the assignment of contigs to chromosomes in the B10v3 genome with the results of the bioinformatic analysis. The combination of information on the markers used in the assembly of the B10v3 genome and the results of FISH and DArT-seq experiments confirmed the reliability of the in silico assignment. Approximately 98% of the protein-coding genes within the chromosomes were assigned and a significant proportion of the repetitive fragments in the sequenced B10v3 genome were identified using the RagTag programme. In addition, BLAST analyses provided comparative information between the B10v3 genome and the 9930 and Gy14 data sets. This revealed both similarities and differences in the functional proteins found between the coding sequences region in the genomes. This study contributes to better knowledge and understanding of cucumber genome line B10v3.


Effect of Transgenesis on mRNA and miRNA Profiles in Cucumber Fruits Expressing Thaumatin II.

  • Magdalena Ewa Pawełkowicz‎ et al.
  • Genes‎
  • 2020‎

Transgenic plants are commonly used in breeding programs because of the various features that can be introduced. However, unintended effects caused by genetic transformation are still a topic of concern. This makes research on the nutritional safety of transgenic crop plants extremely interesting. Cucumber (Cucumis sativus L.) is a crop that is grown worldwide. The aim of this study was to identify and characterize differentially expressed genes and regulatory miRNAs in transgenic cucumber fruits that contain the thaumatin II gene, which encodes the sweet-tasting protein thaumatin II, by NGS sequencing. We compared the fruit transcriptomes and miRNomes of three transgenic cucumber lines with wild-type cucumber. In total, we found 47 differentially expressed genes between control and all three transgenic lines. We performed the bioinformatic functional analysis and gene ontology classification. We also identified 12 differentially regulated miRNAs, from which three can influence the two targets (assigned as DEGs) in one of the studied transgenic lines (line 224). We found that the transformation of cucumber with thaumatin II and expression of the transgene had minimal impact on gene expression and epigenetic regulation by miRNA, in the cucumber fruits.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: