Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 52 papers

Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice.

  • Bilal Al Jaam‎ et al.
  • Open biology‎
  • 2016‎

Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1(cax/cax) (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1(cax/cax) mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1(cax/cax) SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7(+)/MYOD(-) progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice.


Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease.

  • Jordi Duran‎ et al.
  • Human molecular genetics‎
  • 2014‎

Lafora disease is a fatal neurodegenerative condition characterized by the accumulation of abnormal glycogen inclusions known as Lafora bodies. It is an autosomal recessive disorder caused by mutations in either the laforin or malin gene. To study whether glycogen is primarily responsible for the neurodegeneration in Lafora disease, we generated malin knockout mice with impaired (totally or partially) glycogen synthesis. These animals did not show the increase in markers of neurodegeneration, the impairments in electrophysiological properties of hippocampal synapses, nor the susceptibility to kainate-induced epilepsy seen in the malin knockout model. Interestingly, the autophagy impairment that has been described in malin knockout animals was also rescued in this double knockout model. Conversely, two other mouse models in which glycogen is over-accumulated in the brain independently of the lack of malin showed impairment in autophagy. Our findings reveal that glycogen accumulation accounts for the neurodegeneration and functional consequences seen in the malin knockout model, as well as the impaired autophagy. These results identify the regulation of glycogen synthesis as a key target for the treatment of Lafora disease.


Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease.

  • Jordi Valles-Ortega‎ et al.
  • EMBO molecular medicine‎
  • 2011‎

Lafora disease (LD) is caused by mutations in either the laforin or malin gene. The hallmark of the disease is the accumulation of polyglucosan inclusions called Lafora Bodies (LBs). Malin knockout (KO) mice present polyglucosan accumulations in several brain areas, as do patients of LD. These structures are abundant in the cerebellum and hippocampus. Here, we report a large increase in glycogen synthase (GS) in these mice, in which the enzyme accumulates in LBs. Our study focused on the hippocampus where, under physiological conditions, astrocytes and parvalbumin-positive (PV(+)) interneurons expressed GS and malin. Although LBs have been described only in neurons, we found this polyglucosan accumulation in the astrocytes of the KO mice. They also had LBs in the soma and some processes of PV(+) interneurons. This phenomenon was accompanied by the progressive loss of these neuronal cells and, importantly, neurophysiological alterations potentially related to impairment of hippocampal function. Our results emphasize the relevance of the laforin-malin complex in the control of glycogen metabolism and highlight altered glycogen accumulation as a key contributor to neurodegeneration in LD.


Proteomic shifts in embryonic stem cells with gene dose modifications suggest the presence of balancer proteins in protein regulatory networks.

  • Lei Mao‎ et al.
  • PloS one‎
  • 2007‎

Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of "balancer" proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the "elasticity" of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions.


Role of GirK Channels in Long-Term Potentiation of Synaptic Inhibition in an In Vivo Mouse Model of Early Amyloid-β Pathology.

  • Irene Sánchez-Rodríguez‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Imbalances of excitatory/inhibitory synaptic transmission occur early in the pathogenesis of Alzheimer's disease (AD), leading to hippocampal hyperexcitability and causing synaptic, network, and cognitive dysfunctions. G-protein-gated potassium (GirK) channels play a key role in the control of neuronal excitability, contributing to inhibitory signaling. Here, we evaluate the relationship between GirK channel activity and inhibitory hippocampal functionality in vivo. In a non-transgenic mouse model of AD, field postsynaptic potentials (fPSPs) from the CA3⁻CA1 synapse in the dorsal hippocampus were recorded in freely moving mice. Intracerebroventricular (ICV) injections of amyloid-β (Aβ) or GirK channel modulators impaired ionotropic (GABAA-mediated fPSPs) and metabotropic (GirK-mediated fPSPs) inhibitory signaling and disrupted the potentiation of synaptic inhibition. However, the activation of GirK channels prevented Aβ-induced changes in GABAA components. Our data shows, for the first time, the presence of long-term potentiation (LTP) for both the GABAA and GirK-mediated inhibitory postsynaptic responses in vivo. In addition, our results support the importance of an accurate level of GirK-dependent signaling for dorsal hippocampal performance in early amyloid pathology models by controlling the excess of excitation that disrupts synaptic plasticity processes.


Myostatin deficiency is associated with lipidomic abnormalities in skeletal muscles.

  • Narjes Baati‎ et al.
  • Biochimica et biophysica acta. Molecular and cell biology of lipids‎
  • 2017‎

Myostatin (Mstn) deficiency leads to skeletal muscle overgrowth and Mstn inhibition is considered as a promising treatment for muscle-wasting disorders. Mstn gene deletion in mice also causes metabolic changes with decreased mitochondria content, disturbance in mitochondrial respiratory function and increased muscle fatigability. However the impact of MSTN deficiency on these metabolic changes is not fully elucidated. Here, we hypothesized that lack of MSTN will alter skeletal muscle membrane lipid composition in relation with pronounced alterations in muscle function and metabolism. Indeed, phospholipids and in particular cardiolipin mostly present in the inner mitochondrial membrane, play a crucial role in mitochondria function and oxidative phosphorylation process. We observed that Mstn KO muscle had reduced fat membrane transporter levels (FAT/CD36, FABP3, FATP1 and FATP4) associated with decreased lipid oxidative pathway (citrate synthase and β-HAD activities) and impaired lipogenesis (decreased triglyceride and free fatty acid content), indicating a role of mstn in muscle lipid metabolism. We further analyzed phospholipid classes and fatty acid composition by chromatographic methods in muscle and mitochondrial membranes. Mstn KO mice showed increased levels of saturated and polyunsaturated fatty acids at the expense of monounsaturated fatty acids. We also demonstrated, in this phenotype, a reduction in cardiolipin proportion in mitochondrial membrane versus the proportion of others phospholipids, in relation with a decrease in the expression of phosphatidylglycerolphosphate synthase and cardiolipin synthase, enzymes involved in cardiolipin synthesis. These data illustrate the importance of lipids as a link by which MSTN deficiency can impact mitochondrial bioenergetics in skeletal muscle.


Palmitate Is Increased in the Cerebrospinal Fluid of Humans with Obesity and Induces Memory Impairment in Mice via Pro-inflammatory TNF-α.

  • Helen M Melo‎ et al.
  • Cell reports‎
  • 2020‎

Obesity has been associated with cognitive decline, atrophy of brain regions related to learning and memory, and higher risk of developing dementia. However, the molecular mechanisms underlying these neurological alterations are still largely unknown. Here, we investigate the effects of palmitate, a saturated fatty acid present at high amounts in fat-rich diets, in the brain. Palmitate is increased in the cerebrospinal fluid (CSF) of overweight and obese patients with amnestic mild cognitive impairment. In mice, intracerebroventricular infusion of palmitate impairs synaptic plasticity and memory. Palmitate induces astroglial and microglial activation in the mouse hippocampus, and its deleterious impact is mediated by microglia-derived tumor necrosis factor alpha (TNF-α) signaling. Our results establish that obesity is associated with increases in CSF palmitate. By defining a pro-inflammatory mechanism by which abnormal levels of palmitate in the brain impair memory, the results further suggest that anti-inflammatory strategies may attenuate memory impairment in obesity.


R-Ras1 and R-Ras2 Are Essential for Oligodendrocyte Differentiation and Survival for Correct Myelination in the Central Nervous System.

  • Miriam Sanz-Rodriguez‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

Rapid and effective neural transmission of information requires correct axonal myelination. Modifications in myelination alter axonal capacity to transmit electric impulses and enable pathological conditions. In the CNS, oligodendrocytes (OLs) myelinate axons, a complex process involving various cellular interactions. However, we know little about the mechanisms that orchestrate correct myelination. Here, we demonstrate that OLs express R-Ras1 and R-Ras2. Using female and male mutant mice to delete these proteins, we found that activation of the PI3K/Akt and Erk1/2-MAPK pathways was weaker in mice lacking one or both of these GTPases, suggesting that both proteins coordinate the activity of these two pathways. Loss of R-Ras1 and/or R-Ras2 diminishes the number of OLs in major myelinated CNS tracts and increases the proportion of immature OLs. In R-Ras1-/- and R-Ras2-/--null mice, OLs show aberrant morphologies and fail to differentiate correctly into myelin-forming phenotypes. The smaller OL population and abnormal OL maturation induce severe hypomyelination, with shorter nodes of Ranvier in R-Ras1-/- and/or R-Ras2-/- mice. These defects explain the slower conduction velocity of myelinated axons that we observed in the absence of R-Ras1 and R-Ras2. Together, these results suggest that R-Ras1 and R-Ras2 are upstream elements that regulate the survival and differentiation of progenitors into OLs through the PI3K/Akt and Erk1/2-MAPK pathways for proper myelination.SIGNIFICANCE STATEMENT In this study, we show that R-Ras1 and R-Ras2 play essential roles in regulating myelination in vivo and control fundamental aspects of oligodendrocyte (OL) survival and differentiation through synergistic activation of PI3K/Akt and Erk1/2-MAPK signaling. Mice lacking R-Ras1 and/or R-Ras2 show a diminished OL population with a higher proportion of immature OLs, explaining the observed hypomyelination in main CNS tracts. In vivo electrophysiology recordings demonstrate a slower conduction velocity of nerve impulses in the absence of R-Ras1 and R-Ras2. Therefore, R-Ras1 and R-Ras2 are essential for proper axonal myelination and accurate neural transmission.


G-Protein-Gated Inwardly Rectifying Potassium (Kir3/GIRK) Channels Govern Synaptic Plasticity That Supports Hippocampal-Dependent Cognitive Functions in Male Mice.

  • Souhail Djebari‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2021‎

The G-protein-gated inwardly rectifying potassium (Kir3/GIRK) channel is the effector of many G-protein-coupled receptors (GPCRs). Its dysfunction has been linked to the pathophysiology of Down syndrome, Alzheimer's and Parkinson's diseases, psychiatric disorders, epilepsy, drug addiction, or alcoholism. In the hippocampus, GIRK channels decrease excitability of the cells and contribute to resting membrane potential and inhibitory neurotransmission. Here, to elucidate the role of GIRK channels activity in the maintenance of hippocampal-dependent cognitive functions, their involvement in controlling neuronal excitability at different levels of complexity was examined in C57BL/6 male mice. For that purpose, GIRK activity in the dorsal hippocampus CA3-CA1 synapse was pharmacologically modulated by two drugs: ML297, a GIRK channel opener, and Tertiapin-Q (TQ), a GIRK channel blocker. Ex vivo, using dorsal hippocampal slices, we studied the effect of pharmacological GIRK modulation on synaptic plasticity processes induced in CA1 by Schaffer collateral stimulation. In vivo, we performed acute intracerebroventricular (i.c.v.) injections of the two GIRK modulators to study their contribution to electrophysiological properties and synaptic plasticity of dorsal hippocampal CA3-CA1 synapse, and to learning and memory capabilities during hippocampal-dependent tasks. We found that pharmacological disruption of GIRK channel activity by i.c.v. injections, causing either function gain or function loss, induced learning and memory deficits by a mechanism involving neural excitability impairments and alterations in the induction and maintenance of long-term synaptic plasticity processes. These results support the contention that an accurate control of GIRK activity must take place in the hippocampus to sustain cognitive functions.SIGNIFICANCE STATEMENT Cognitive processes of learning and memory that rely on hippocampal synaptic plasticity processes are critically ruled by a finely tuned neural excitability. G-protein-gated inwardly rectifying K+ (GIRK) channels play a key role in maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Here, we demonstrate that modulation of GIRK channels activity, causing either function gain or function loss, transforms high-frequency stimulation (HFS)-induced long-term potentiation (LTP) into long-term depression (LTD), inducing deficits in hippocampal-dependent learning and memory. Together, our data show a crucial GIRK-activity-mediated mechanism that governs synaptic plasticity direction and modulates subsequent hippocampal-dependent cognitive functions.


Lack of Neuronal Glycogen Impairs Memory Formation and Learning-Dependent Synaptic Plasticity in Mice.

  • Jordi Duran‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

Since brain glycogen is stored mainly in astrocytes, the role of this polysaccharide in neurons has been largely overlooked. To study the existence and relevance of an active neuronal glycogen metabolism in vivo, we generated a mouse model lacking glycogen synthase specifically in the Camk2a-expressing postnatal forebrain pyramidal neurons (GYS1Camk2a-KO), which include the prefrontal cortex and the CA3 and CA1 cell layers of the hippocampus. The latter are involved in memory and learning processes and participate in the hippocampal CA3-CA1 synapse, the function of which can be analyzed electrophysiologically. Long-term potentiation evoked in the hippocampal CA3-CA1 synapse was decreased in alert behaving GYS1Camk2a-KO mice. They also showed a significant deficiency in the acquisition of an instrumental learning task - a type of associative learning involving prefrontal and hippocampal circuits. Interestingly, GYS1Camk2a-KO animals did not show the greater susceptibility to hippocampal seizures and myoclonus observed in animals completely depleted of glycogen in the whole CNS. These results unequivocally demonstrate the presence of an active glycogen metabolism in neurons in vivo and reveal a key role of neuronal glycogen in the proper acquisition of new motor and cognitive abilities, and in the changes in synaptic strength underlying such acquisition.


Chaotic and Fast Audiovisuals Increase Attentional Scope but Decrease Conscious Processing.

  • Celia Andreu-Sánchez‎ et al.
  • Neuroscience‎
  • 2018‎

Audiovisual cuts involve spatial, temporal, and action narrative leaps. They can even change the meaning of the narrative through film editing. Many cuts are not consciously perceived, others are, just as we perceive or not the changes in real events. In this paper, we analyze the effects of cuts and different editing styles on 36 subjects, using electroencephalographic (EEG) techniques and the projection of stimuli with different audiovisual style of edition but the same narrative. Eyeblinks, event-related potentials (ERPs), EEG spectral power and disturbances, and the functional and effective connectivity before and after the cuts were analyzed. Cuts decreased blink frequency in the first second following them. Cuts also caused an increase of the alpha rhythm, with a cortical evolution from visual toward rostral areas. There were marked differences between a video-clip editing style, with greater activities evoked in visual areas, and the classic continuous style of editing, which presented greater activities in the frontal zones. This was reflected by differences in the theta rhythm between 200 and 400 ms, in visual and frontal zones, and can be connected to the different demands that each style of edition makes on working memory and conscious processing after cutting. Also, at the time of cuts, the causality between visual, somatosensory, and frontal networks is altered in any editing style. Our findings suggest that cuts affect media perception and chaotic and fast audiovisuals increase attentional scope but decrease conscious processing.


Activation of G-protein-gated inwardly rectifying potassium (Kir3/GirK) channels rescues hippocampal functions in a mouse model of early amyloid-β pathology.

  • Irene Sánchez-Rodríguez‎ et al.
  • Scientific reports‎
  • 2017‎

The hippocampus plays a critical role in learning and memory. Its correct performance relies on excitatory/inhibitory synaptic transmission balance. In early stages of Alzheimer's disease (AD), neuronal hyperexcitability leads to network dysfunction observed in cortical regions such as the hippocampus. G-protein-gated potassium (GirK) channels induce neurons to hyperpolarize, contribute to the resting membrane potential and could compensate any excesses of excitation. Here, we have studied the relationship between GirK channels and hippocampal function in a mouse model of early AD pathology. Intracerebroventricular injections of amyloid-β (Aβ 1-42) peptide-which have a causal role in AD pathogenesis-were performed to evaluate CA3-CA1 hippocampal synapse functionality in behaving mice. Aβ increased the excitability of the CA3-CA1 synapse, impaired long-term potentiation (LTP) and hippocampal oscillatory activity, and induced deficits in novel object recognition (NOR) tests. Injection of ML297 alone, a selective GirK activator, was also translated in LTP and NOR deficits. However, increasing GirK activity rescued all hippocampal deficits induced by Aβ due to the restoration of excitability values in the CA3-CA1 synapse. Our results show a synaptic mechanism, through GirK channel modulation, for the prevention of the hyperexcitability that causally contributes to synaptic, network, and cognitive deficits found in early AD pathogenesis.


A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome.

  • Patricia Lopes Pereira‎ et al.
  • Human molecular genetics‎
  • 2009‎

Mental retardation in Down syndrome (DS), the most frequent trisomy in humans, varies from moderate to severe. Several studies both in human and based on mouse models identified some regions of human chromosome 21 (Hsa21) as linked to cognitive deficits. However, other intervals such as the telomeric region of Hsa21 may contribute to the DS phenotype but their role has not yet been investigated in detail. Here we show that the trisomy of the 12 genes, found in the 0.59 Mb (Abcg1-U2af1) Hsa21 sub-telomeric region, in mice (Ts1Yah) produced defects in novel object recognition, open-field and Y-maze tests, similar to other DS models, but induces an improvement of the hippocampal-dependent spatial memory in the Morris water maze along with enhanced and longer lasting long-term potentiation in vivo in the hippocampus. Overall, we demonstrate the contribution of the Abcg1-U2af1 genetic region to cognitive defect in working and short-term recognition memory in DS models. Increase in copy number of the Abcg1-U2af1 interval leads to an unexpected gain of cognitive function in spatial learning. Expression analysis pinpoints several genes, such as Ndufv3, Wdr4, Pknox1 and Cbs, as candidates whose overexpression in the hippocampus might facilitate learning and memory in Ts1Yah mice. Our work unravels the complexity of combinatorial genetic code modulating different aspect of mental retardation in DS patients. It establishes definitely the contribution of the Abcg1-U2af1 orthologous region to the DS etiology and suggests new modulatory pathways for learning and memory.


Regulation of GABA(A) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice.

  • Alejandra Rangel‎ et al.
  • PloS one‎
  • 2009‎

Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrP(sc)) of the natural cellular prion protein (PrP(c)) encoded by the Prnp gene. Although several roles have been attributed to PrP(c), its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrP(c) studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation.


Long-lasting correction of in vivo LTP and cognitive deficits of mice modelling Down syndrome with an α5-selective GABAA inverse agonist.

  • Arnaud Duchon‎ et al.
  • British journal of pharmacology‎
  • 2020‎

Excessive GABAergic inhibition contributes to cognitive dysfunctions in Down syndrome (DS). Selective negative allosteric modulators (NAMs) of α5-containing GABAA receptors such as the α5 inverse agonist (α5IA) restore learning and memory deficits in Ts65Dn mice, a model of DS. In this study we have assessed the long-lasting effects of α5IA on in vivo LTP and behaviour in Ts65Dn mice.


The Claustrum is Involved in Cognitive Processes Related to the Classical Conditioning of Eyelid Responses in Behaving Rabbits.

  • M Mar Reus-García‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2021‎

It is assumed that the claustrum (CL) is involved in sensorimotor integration and cognitive processes. We recorded the firing activity of identified CL neurons during classical eyeblink conditioning in rabbits, using a delay paradigm in which a tone was presented as conditioned stimulus (CS), followed by a corneal air puff as unconditioned stimulus (US). Neurons were identified by their activation from motor (MC), cingulate (CC), and medial prefrontal (mPFC) cortices. CL neurons were rarely activated by single stimuli of any modality. In contrast, their firing was significantly modulated during the first sessions of paired CS/US presentations, but not in well-trained animals. Neuron firing rates did not correlate with the kinematics of conditioned responses (CRs). CL local field potentials (LFPs) changed their spectral power across learning and presented well-differentiated CL-mPFC/CL-MC network dynamics, as shown by crossfrequency spectral measurements. CL electrical stimulation did not evoke eyelid responses, even in trained animals. Silencing of synaptic transmission of CL neurons by the vINSIST method delayed the acquisition of CRs but did not affect their presentation rate. The CL plays an important role in the acquisition of associative learning, mostly in relation to the novelty of CS/US association, but not in the expression of CRs.


The Effect of Media Professionalization on Cognitive Neurodynamics During Audiovisual Cuts.

  • Celia Andreu-Sánchez‎ et al.
  • Frontiers in systems neuroscience‎
  • 2021‎

Experts apply their experience to the proper development of their routine activities. Their acquired expertise or professionalization is expected to help in the development of those recurring tasks. Media professionals spend their daily work watching narrative contents on screens, so learning how they manage visual perception of those contents could be of interest in an increasingly audiovisual society. Media works require not only the understanding of the storytelling, but also the decoding of the formal rules and presentations. We recorded electroencephalographic (EEG) signals from 36 participants (18 media professionals and 18 non-media professionals) while they were watching audiovisual contents, and compared their eyeblink rate and their brain activity and connectivity. We found that media professionals decreased their blink rate after the cuts, suggesting that they can better manage the loss of visual information that blinks entail by sparing them when new visual information is being presented. Cuts triggered similar activation of basic brain processing in the visual cortex of the two groups, but different processing in medial and frontal cortical areas, where media professionals showed a lower activity. Effective brain connectivity occurred in a more organized way in media professionals-possibly due to a better communication between cortical areas that are coordinated for decoding new visual content after cuts.


Viewers Change Eye-Blink Rate by Predicting Narrative Content.

  • Celia Andreu-Sánchez‎ et al.
  • Brain sciences‎
  • 2021‎

Eye blinks provoke a loss of visual information. However, we are not constantly making conscious decisions about the appropriate moment to blink. The presence or absence of eye blinks also denotes levels of attention. We presented three movies with the exact same narrative but different styles of editing and recorded participants' eye blinks. We found that moments of increased or decreased eye blinks by viewers coincided with the same content in the different movie styles. The moments of increased eye blinks corresponded to those when the actor leaves the scene and when the movie repeats the same action for a while. The moments of decreased eye blinks corresponded to actions where visual information was crucial to proper understanding of the scene presented. According to these results, viewers' attention is more related to narrative content than to the style of editing when watching movies.


Operant conditioning deficits and modified local field potential activities in parvalbumin-deficient mice.

  • Alessandra Lintas‎ et al.
  • Scientific reports‎
  • 2021‎

Altered functioning of GABAergic interneurons expressing parvalbumin (PV) in the basal ganglia-thalamo-cortical circuit are likely to be involved in several human psychiatric disorders characterized by deficits in attention and sensory gating with dysfunctional decision-making behavior. However, the contribution of these interneurons in the ability to acquire demanding learning tasks remains unclear. Here, we combine an operant conditioning task with local field potentials simultaneously recorded in several nuclei involved in reward circuits of wild-type (WT) and PV-deficient (PVKO) mice, which are characterized by changes in firing activity of PV-expressing interneurons. In comparison with WT mice, PVKO animals presented significant deficits in the acquisition of the selected learning task. Recordings from prefrontal cortex, nucleus accumbens (NAc) and hippocampus showed significant decreases of the spectral power in beta and gamma bands in PVKO compared with WT mice particularly during the performance of the operant conditioning task. From the first to the last session, at all frequency bands the spectral power in NAc tended to increase in WT and to decrease in PVKO. Results indicate that PV deficiency impairs signaling necessary for instrumental learning and the recognition of natural rewards.


Recognition Memory Induces Natural LTP-like Hippocampal Synaptic Excitation and Inhibition.

  • Irene Sánchez-Rodríguez‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Synaptic plasticity is a cellular process involved in learning and memory by which specific patterns of neural activity adapt the synaptic strength and efficacy of the synaptic transmission. Its induction is governed by fine tuning between excitatory/inhibitory synaptic transmission. In experimental conditions, synaptic plasticity can be artificially evoked at hippocampal CA1 pyramidal neurons by repeated stimulation of Schaffer collaterals. However, long-lasting synaptic modifications studies during memory formation in physiological conditions in freely moving animals are very scarce. Here, to study synaptic plasticity phenomena during recognition memory in the dorsal hippocampus, field postsynaptic potentials (fPSPs) evoked at the CA3-CA1 synapse were recorded in freely moving mice during object-recognition task performance. Paired pulse stimuli were applied to Schaffer collaterals at the moment that the animal explored a new or a familiar object along different phases of the test. Stimulation evoked a complex synaptic response composed of an ionotropic excitatory glutamatergic fEPSP, followed by two inhibitory responses, an ionotropic, GABAA-mediated fIPSP and a metabotropic, G-protein-gated inwardly rectifying potassium (GirK) channel-mediated fIPSP. Our data showed the induction of LTP-like enhancements for both the glutamatergic and GirK-dependent components of the dorsal hippocampal CA3-CA1 synapse during the exploration of novel but not familiar objects. These results support the contention that synaptic plasticity processes that underlie hippocampal-dependent memory are sustained by fine tuning mechanisms that control excitatory and inhibitory neurotransmission balance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: