Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes.

  • Jan Castonguay‎ et al.
  • Scientific reports‎
  • 2017‎

Two-pore channels (TPCs) are localized in endo-lysosomal compartments and assumed to play an important role for vesicular fusion and endosomal trafficking. Recently, it has been shown that both TPC1 and 2 were required for host cell entry and pathogenicity of Ebola viruses. Here, we investigate the cellular function of TPC1 using protein toxins as model substrates for distinct endosomal processing routes. Toxin uptake and activation through early endosomes but not processing through other compartments were reduced in TPC1 knockout cells. Detailed co-localization studies with subcellular markers confirmed predominant localization of TPC1 to early and recycling endosomes. Proteomic analysis of native TPC1 channels finally identified direct interaction with a distinct set of syntaxins involved in fusion of intracellular vesicles. Together, our results demonstrate a general role of TPC1 for uptake and processing of proteins in early and recycling endosomes, likely by providing high local Ca2+ concentrations required for SNARE-mediated vesicle fusion.


High-resolution proteomics unravel architecture and molecular diversity of native AMPA receptor complexes.

  • Jochen Schwenk‎ et al.
  • Neuron‎
  • 2012‎

AMPA-type glutamate receptors (AMPARs) are responsible for a variety of processes in the mammalian brain including fast excitatory neurotransmission, postsynaptic plasticity, or synapse development. Here, with comprehensive and quantitative proteomic analyses, we demonstrate that native AMPARs are macromolecular complexes with a large molecular diversity. This diversity results from coassembly of the known AMPAR subunits, pore-forming GluA and three types of auxiliary proteins, with 21 additional constituents, mostly secreted proteins or transmembrane proteins of different classes. Their integration at distinct abundance and stability establishes the heteromultimeric architecture of native AMPAR complexes: a defined core with a variable periphery resulting in an apparent molecular mass between 0.6 and 1 MDa. The additional constituents change the gating properties of AMPARs and provide links to the protein dynamics fundamental for the complex role of AMPARs in formation and operation of glutamatergic synapses.


An ER Assembly Line of AMPA-Receptors Controls Excitatory Neurotransmission and Its Plasticity.

  • Jochen Schwenk‎ et al.
  • Neuron‎
  • 2019‎

Excitatory neurotransmission and its activity-dependent plasticity are largely determined by AMPA-receptors (AMPARs), ion channel complexes whose cell physiology is encoded by their interactome. Here, we delineate the assembly of AMPARs in the endoplasmic reticulum (ER) of native neurons as multi-state production line controlled by distinct interactome constituents: ABHD6 together with porcupine stabilizes pore-forming GluA monomers, and the intellectual-disability-related FRRS1l-CPT1c complexes promote GluA oligomerization and co-assembly of GluA tetramers with cornichon and transmembrane AMPA-regulatory proteins (TARP) to render receptor channels ready for ER exit. Disruption of the assembly line by FRRS1l deletion largely reduces AMPARs in the plasma membrane, impairs synapse formation, and abolishes activity-dependent synaptic plasticity, while FRRS1l overexpression has the opposite effect. As a consequence, FRSS1l knockout mice display severe deficits in learning tasks and behavior. Our results provide mechanistic insight into the stepwise biogenesis of AMPARs in native ER membranes and establish FRRS1l as a powerful regulator of synaptic signaling and plasticity.


A Noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors.

  • Sami Boudkkazi‎ et al.
  • Neuron‎
  • 2023‎

Information processing and storage in the brain rely on AMPA-receptors (AMPARs) and their context-dependent dynamics in synapses and extra-synaptic sites. We found that distribution and dynamics of AMPARs in the plasma membrane are controlled by Noelins, a three-member family of conserved secreted proteins expressed throughout the brain in a cell-type-specific manner. Noelin tetramers tightly assemble with the extracellular domains of AMPARs and interconnect them in a network-like configuration with a variety of secreted and membrane-anchored proteins including Neurexin1, Neuritin1, and Seizure 6-like. Knock out of Noelins1-3 profoundly reduced AMPARs in synapses onto excitatory and inhibitory (inter)neurons, decreased their density and clustering in dendrites, and abolished activity-dependent synaptic plasticity. Our results uncover an endogenous mechanism for extracellular anchoring of AMPARs and establish Noelin-organized networks as versatile determinants of constitutive and context-dependent neurotransmission.


Erythrocyte invasion-neutralising antibodies prevent Plasmodium falciparum RH5 from binding to basigin-containing membrane protein complexes.

  • Abhishek Jamwal‎ et al.
  • eLife‎
  • 2023‎

Basigin is an essential host receptor for invasion of Plasmodium falciparum into human erythrocytes, interacting with parasite surface protein PfRH5. PfRH5 is a leading blood-stage malaria vaccine candidate and a target of growth-inhibitory antibodies. Here, we show that erythrocyte basigin is exclusively found in one of two macromolecular complexes, bound either to plasma membrane Ca2+-ATPase 1/4 (PMCA1/4) or to monocarboxylate transporter 1 (MCT1). PfRH5 binds to each of these complexes with a higher affinity than to isolated basigin ectodomain, making it likely that these are the physiological targets of PfRH5. PMCA-mediated Ca2+ export is not affected by PfRH5, making it unlikely that this is the mechanism underlying changes in calcium flux at the interface between an erythrocyte and the invading parasite. However, our studies rationalise the function of the most effective growth-inhibitory antibodies targeting PfRH5. While these antibodies do not reduce the binding of PfRH5 to monomeric basigin, they do reduce its binding to basigin-PMCA and basigin-MCT complexes. This indicates that the most effective PfRH5-targeting antibodies inhibit growth by sterically blocking the essential interaction of PfRH5 with basigin in its physiological context.


Deletion in the N-terminal half of olfactomedin 1 modifies its interaction with synaptic proteins and causes brain dystrophy and abnormal behavior in mice.

  • Naoki Nakaya‎ et al.
  • Experimental neurology‎
  • 2013‎

Olfactomedin 1 (Olfm1) is a secreted glycoprotein that is preferentially expressed in neuronal tissues. Here we show that deletion of exons 4 and 5 from the Olfm1 gene, which encodes a 52 amino acid long region in the N-terminal part of the protein, increased neonatal death and reduced body weight of surviving homozygous mice. Magnetic resonance imaging analyses revealed reduced brain volume and attenuated size of white matter tracts such as the anterior commissure, corpus callosum, and optic nerve. Adult Olfm1 mutant mice demonstrated abnormal behavior in several tests including reduced marble digging, elevated plus maze test, nesting activity and latency on balance beam tests as compared with their wild-type littermates. The olfactory system was both structurally and functionally disturbed by the mutation in the Olfm1 gene as shown by functional magnetic resonance imaging analysis and a smell test. Deficiencies of the olfactory system may contribute to the neonatal death and loss of body weight of Olfm1 mutant. Shotgun proteomics revealed 59 candidate proteins that co-precipitated with wild-type or mutant Olfm1 proteins in postnatal day 1 brain. Olfm1-binding targets included GluR2, Cav2.1, teneurin-4 and Kidins220. Modified interaction of Olfm1 with binding targets led to an increase in intracellular Ca(2+) concentration and activation of ERK1/2, MEK1 and CaMKII in the hippocampus and olfactory bulb of Olfm1 mutant mice compared with their wild-type littermates. Excessive activation of the CaMKII and Ras-ERK pathways in the Olfm1 mutant olfactory bulb and hippocampus by elevated intracellular calcium may contribute to the abnormal behavior and olfactory activity of Olfm1 mutant mice.


A structural model for K2P potassium channels based on 23 pairs of interacting sites and continuum electrostatics.

  • Astrid Kollewe‎ et al.
  • The Journal of general physiology‎
  • 2009‎

K(2P)Ø, the two-pore domain potassium background channel that determines cardiac rhythm in Drosophila melanogaster, and its homologues that establish excitable membrane activity in mammals are of unknown structure. K(2P) subunits have two pore domains flanked by transmembrane (TM) spans: TM1-P1-TM2-TM3-P2-TM4. To establish spatial relationships in K(2P)Ø, we identified pairs of sites that display electrostatic compensation. Channels silenced by the addition of a charge in pore loop 1 (P1) or P2 were restored to function by countercharges at specific second sites. A three-dimensional homology model was determined using the crystal structure of K(V)1.2, effects of K(2P)Ø mutations to establish alignment, and compensatory charge-charge pairs. The model was refined and validated by continuum electrostatic free energy calculations and covalent linkage of introduced cysteines. K(2P) channels use two subunits arranged so that the P1 and P2 loops contribute to one pore, identical P loops face each other diagonally across the pore, and the channel complex has bilateral symmetry with a fourfold symmetric selectivity filter.


Regional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian brain.

  • Jochen Schwenk‎ et al.
  • Neuron‎
  • 2014‎

Native AMPA receptors (AMPARs) in the mammalian brain are macromolecular complexes whose functional characteristics vary across the different brain regions and change during postnatal development or in response to neuronal activity. The structural and functional properties of the AMPARs are determined by their proteome, the ensemble of their protein building blocks. Here we use high-resolution quantitative mass spectrometry to analyze the entire pool of AMPARs affinity-isolated from distinct brain regions, selected sets of neurons, and whole brains at distinct stages of postnatal development. These analyses show that the AMPAR proteome is dynamic in both space and time: AMPARs exhibit profound region specificity in their architecture and the constituents building their core and periphery. Likewise, AMPARs exchange many of their building blocks during postnatal development. These results provide a unique resource and detailed contextual data sets for the analysis of native AMPAR complexes and their role in excitatory neurotransmission.


The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvbeta1.

  • Uwe Schulte‎ et al.
  • Neuron‎
  • 2006‎

The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.


The Phosphatase PP2A Interacts With ArnA and ArnB to Regulate the Oligomeric State and the Stability of the ArnA/B Complex.

  • Xing Ye‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

In the crenarchaeon Sulfolobus acidocaldarius, the archaellum, a type-IV pilus like motility structure, is synthesized in response to nutrient starvation. Synthesis of components of the archaellum is controlled by the archaellum regulatory network (arn). Protein phosphorylation plays an important role in this regulatory network since the deletion of several genes encoding protein kinases and the phosphatase PP2A affected cell motility. Several proteins in the archaellum regulatory network can be phosphorylated, however, details of how phosphorylation levels of different components affect archaellum synthesis are still unknown. To identify proteins interacting with the S. acidocaldarius phosphatases PTP and PP2A, co-immunoprecipitation assays coupled to mass spectrometry analysis were performed. Thirty minutes after growth in nutrient starvation medium, especially a conserved putative ATP/GTP binding protein (Saci_1281), a universal stress protein (Saci_0887) and the archaellum regulators ArnA and ArnB were identified as highly abundant interaction proteins of PP2A. The interaction between ArnA, ArnB, and PP2A was further studied. Previous studies showed that the Forkhead-associated domain containing ArnA interacts with von Willebrand type A domain containing ArnB, and that both proteins could be phosphorylated by the kinase ArnC in vitro. The ArnA/B heterodimer was reconstituted from the purified proteins. In complex with ArnA, phosphorylation of ArnB by the ArnC kinase was strongly stimulated and resulted in formation of (ArnA/B)2 and higher oligomeric complexes, while association and dephosphorylation by PP2A resulted in dissociation of these ArnA/B complexes.


Heteromeric channels formed by TRPC1, TRPC4 and TRPC5 define hippocampal synaptic transmission and working memory.

  • Jenny Bröker-Lai‎ et al.
  • The EMBO journal‎
  • 2017‎

Canonical transient receptor potential (TRPC) channels influence various neuronal functions. Using quantitative high-resolution mass spectrometry, we demonstrate that TRPC1, TRPC4, and TRPC5 assemble into heteromultimers with each other, but not with other TRP family members in the mouse brain and hippocampus. In hippocampal neurons from Trpc1/Trpc4/Trpc5-triple-knockout (Trpc1/4/5-/-) mice, lacking any TRPC1-, TRPC4-, or TRPC5-containing channels, action potential-triggered excitatory postsynaptic currents (EPSCs) were significantly reduced, whereas frequency, amplitude, and kinetics of quantal miniature EPSC signaling remained unchanged. Likewise, evoked postsynaptic responses in hippocampal slice recordings and transient potentiation after tetanic stimulation were decreased. In vivo, Trpc1/4/5-/- mice displayed impaired cross-frequency coupling in hippocampal networks and deficits in spatial working memory, while spatial reference memory was unaltered. Trpc1/4/5-/- animals also exhibited deficiencies in adapting to a new challenge in a relearning task. Our results indicate the contribution of heteromultimeric channels from TRPC1, TRPC4, and TRPC5 subunits to the regulation of mechanisms underlying spatial working memory and flexible relearning by facilitating proper synaptic transmission in hippocampal neurons.


The molecular appearance of native TRPM7 channel complexes identified by high-resolution proteomics.

  • Astrid Kollewe‎ et al.
  • eLife‎
  • 2021‎

The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed membrane protein consisting of ion channel and protein kinase domains. TRPM7 plays a fundamental role in the cellular uptake of divalent cations such as Zn2+, Mg2+, and Ca2+, and thus shapes cellular excitability, plasticity, and metabolic activity. The molecular appearance and operation of TRPM7 channels in native tissues have remained unresolved. Here, we investigated the subunit composition of endogenous TRPM7 channels in rodent brain by multi-epitope affinity purification and high-resolution quantitative mass spectrometry (MS) analysis. We found that native TRPM7 channels are high-molecular-weight multi-protein complexes that contain the putative metal transporter proteins CNNM1-4 and a small G-protein ADP-ribosylation factor-like protein 15 (ARL15). Heterologous reconstitution experiments confirmed the formation of TRPM7/CNNM/ARL15 ternary complexes and indicated that complex formation effectively and specifically impacts TRPM7 activity. These results open up new avenues towards a mechanistic understanding of the cellular regulation and function of TRPM7 channels.


Circulating multimeric immune complexes contribute to immunopathology in COVID-19.

  • Jakob Ankerhold‎ et al.
  • Nature communications‎
  • 2022‎

A dysregulated immune response with high levels of SARS-CoV-2 specific IgG antibodies characterizes patients with severe or critical COVID-19. Although a robust IgG response is considered to be protective, excessive triggering of activating Fc-gamma-receptors (FcγRs) could be detrimental and cause immunopathology. Here, we document excessive FcγRIIIA/CD16A activation in patients developing severe or critical COVID-19 but not in those with mild disease. We identify two independent ligands mediating extreme FcγRIIIA/CD16A activation. Soluble circulating IgG immune complexes (sICs) are detected in about 80% of patients with severe and critical COVID-19 at levels comparable to active systemic lupus erythematosus (SLE) disease. FcγRIIIA/CD16A activation is further enhanced by afucosylation of SARS-CoV-2 specific IgG. Utilizing cell-based reporter systems we provide evidence that sICs can be formed prior to a specific humoral response against SARS-CoV-2. Our data suggest a cycle of immunopathology driven by an early formation of sICs in predisposed patients. These findings suggest a reason for the seemingly paradoxical findings of high antiviral IgG responses and systemic immune dysregulation in severe COVID-19. The involvement of circulating sICs in the promotion of immunopathology in predisposed patients opens new possibilities for intervention strategies to mitigate critical COVID-19 progression.


Deletion of olfactomedin 2 induces changes in the AMPA receptor complex and impairs visual, olfactory, and motor functions in mice.

  • Afia Sultana‎ et al.
  • Experimental neurology‎
  • 2014‎

Olfactomedin 2 (Olfm2) is a secretory glycoprotein belonging to the family of olfactomedin domain-containing proteins. A previous study has shown that a mutation in OLFM2 is associated with primary open angle glaucoma in Japanese patients. In the present study, we generated Olfm2 deficient mice by replacing the Olfm2 gene with the LacZ gene. The loss of Olfm2 resulted in no gross abnormalities. However, Olfm2 null mice showed reduced exploration, locomotion, olfactory sensitivity, abnormal motor coordination, and anxiety related behavior. The pattern of the Olfm2 gene expression was studied in the brain and eye using β-galactosidase staining. In the brain, Olfm2 was mainly expressed in the olfactory bulb, cortex, piriform cortex, olfactory trabeculae, and inferior and superior colliculus. In the eye expression was detected mainly in retinal ganglion cells. In Olfm2 null mice, the amplitude of the first negative wave in the visual evoked potential test was significantly reduced as compared with wild-type littermates. Olfm2, similar to Olfm1, interacted with the GluR2 subunit of the AMPAR complexes and Olfm2 co-segregated with the AMPA receptor subunit GluR2 and other synaptic proteins in the synaptosomal membrane fraction upon biochemical fractionation of the adult mice cortex and retina. Immunoprecipitation from the synaptosomal membrane fraction of the Olfm2 null mouse brain cortex using the GluR2 antibody showed reduced levels of several components of the AMPAR complex in the immunoprecipitates including Olfm1, PSD95 and CNIH2. These results suggest that heterodimers of Olfm1 and Olfm2 interact with AMPAR more efficiently than Olfm2 homodimers and that Olfm2 plays a role in the organization of the AMPA receptor complexes.


Extending the dynamic range of label-free mass spectrometric quantification of affinity purifications.

  • Wolfgang Bildl‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2012‎

Affinity purification (AP) of protein complexes combined with LC-MS/MS analysis is the current method of choice for identification of protein-protein interactions. Their interpretation with respect to significance, specificity, and selectivity requires quantification methods coping with enrichment factors of more than 1000-fold, variable amounts of total protein, and low abundant, unlabeled samples. We used standardized samples (0.1-1000 fmol) measured on high resolution hybrid linear ion trap instruments (LTQ-FT/Orbitrap) to characterize and improve linearity and dynamic range of label-free approaches. Quantification based on spectral counts was limited by saturation and ion suppression effects with samples exceeding 100 ng of protein, depending on the instrument setup. In contrast, signal intensities of peptides (peak volumes) selected by a novel correlation-based method (TopCorr-PV) were linear over at least 4 orders of magnitude and allowed for accurate relative quantification of standard proteins spiked into a complex protein background. Application of this procedure to APs of the voltage-gated potassium channel Kv1.1 as a model membrane protein complex unambiguously identified the whole set of known interaction partners together with novel candidates. In addition to discriminating these proteins from background, we could determine efficiency, cross-reactivities, and selection biases of the used purification antibodies. The enhanced dynamic range of the developed quantification procedure appears well suited for sensitive identification of specific protein-protein interactions, detection of antibody-related artifacts, and optimization of AP conditions.


AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability.

  • Aline Brechet‎ et al.
  • Nature communications‎
  • 2017‎

AMPA-type glutamate receptors (AMPARs), key elements in excitatory neurotransmission in the brain, are macromolecular complexes whose properties and cellular functions are determined by the co-assembled constituents of their proteome. Here we identify AMPAR complexes that transiently form in the endoplasmic reticulum (ER) and lack the core-subunits typical for AMPARs in the plasma membrane. Central components of these ER AMPARs are the proteome constituents FRRS1l (C9orf4) and CPT1c that specifically and cooperatively bind to the pore-forming GluA1-4 proteins of AMPARs. Bi-allelic mutations in the human FRRS1L gene are shown to cause severe intellectual disability with cognitive impairment, speech delay and epileptic activity. Virus-directed deletion or overexpression of FRRS1l strongly impact synaptic transmission in adult rat brain by decreasing or increasing the number of AMPARs in synapses and extra-synaptic sites. Our results provide insight into the early biogenesis of AMPARs and demonstrate its pronounced impact on synaptic transmission and brain function.


Complex formation of APP with GABAB receptors links axonal trafficking to amyloidogenic processing.

  • Margarita C Dinamarca‎ et al.
  • Nature communications‎
  • 2019‎

GABAB receptors (GBRs) are key regulators of synaptic release but little is known about trafficking mechanisms that control their presynaptic abundance. We now show that sequence-related epitopes in APP, AJAP-1 and PIANP bind with nanomolar affinities to the N-terminal sushi-domain of presynaptic GBRs. Of the three interacting proteins, selectively the genetic loss of APP impaired GBR-mediated presynaptic inhibition and axonal GBR expression. Proteomic and functional analyses revealed that APP associates with JIP and calsyntenin proteins that link the APP/GBR complex in cargo vesicles to the axonal trafficking motor. Complex formation with GBRs stabilizes APP at the cell surface and reduces proteolysis of APP to Aβ, a component of senile plaques in Alzheimer's disease patients. Thus, APP/GBR complex formation links presynaptic GBR trafficking to Aβ formation. Our findings support that dysfunctional axonal trafficking and reduced GBR expression in Alzheimer's disease increases Aβ formation.


Conformational regulation and target-myristoyl switch of calcineurin B homologous protein 3.

  • Florian Becker‎ et al.
  • eLife‎
  • 2023‎

Calcineurin B homologous protein 3 (CHP3) is an EF-hand Ca2+-binding protein involved in regulation of cancerogenesis, cardiac hypertrophy, and neuronal development through interactions with sodium/proton exchangers (NHEs) and signalling proteins. While the importance of Ca2+ binding and myristoylation for CHP3 function has been recognized, the underlying molecular mechanism remained elusive. In this study, we demonstrate that Ca2+ binding and myristoylation independently affect the conformation and functions of human CHP3. Ca2+ binding increased local flexibility and hydrophobicity of CHP3 indicative of an open conformation. The Ca2+-bound CHP3 exhibited a higher affinity for NHE1 and associated stronger with lipid membranes compared to the Mg2+-bound CHP3, which adopted a closed conformation. Myristoylation enhanced the local flexibility of CHP3 and decreased its affinity to NHE1 independently of the bound ion, but did not affect its binding to lipid membranes. The data exclude the proposed Ca2+-myristoyl switch for CHP3. Instead, a Ca2+-independent exposure of the myristoyl moiety is induced by binding of the target peptide to CHP3 enhancing its association to lipid membranes. We name this novel regulatory mechanism 'target-myristoyl switch'. Collectively, the interplay of Ca2+ binding, myristoylation, and target binding allows for a context-specific regulation of CHP3 functions.


Neuroplastin and Basigin Are Essential Auxiliary Subunits of Plasma Membrane Ca2+-ATPases and Key Regulators of Ca2+ Clearance.

  • Nadine Schmidt‎ et al.
  • Neuron‎
  • 2017‎

Plasma membrane Ca2+-ATPases (PMCAs), a family of P-type ATPases, extrude Ca2+ ions from the cytosol to the extracellular space and are considered to be key regulators of Ca2+ signaling. Here we show by functional proteomics that native PMCAs are heteromeric complexes that are assembled from two pore-forming PMCA1-4 subunits and two of the single-span membrane proteins, either neuroplastin or basigin. Contribution of the two Ig domain-containing proteins varies among different types of cells and along postnatal development. Complex formation of neuroplastin or basigin with PMCAs1-4 occurs in the endoplasmic reticulum and is obligatory for stability of the PMCA proteins and for delivery of PMCA complexes to the surface membrane. Knockout and (over)-expression of both neuroplastin and basigin profoundly affect the time course of PMCA-mediated Ca2+ transport, as well as submembraneous Ca2+ concentrations under steady-state conditions. Together, these results establish neuroplastin and basigin as obligatory auxiliary subunits of native PMCAs and key regulators of intracellular Ca2+ concentration.


Impaired AMPA receptor trafficking by a double knockout of zebrafish olfactomedin1a/b.

  • Naoki Nakaya‎ et al.
  • Journal of neurochemistry‎
  • 2017‎

The olfm1a and olfm1b genes in zebrafish encode conserved secreted glycoproteins. These genes are preferentially expressed in the brain and retina starting from 16 h post-fertilization until adulthood. Functions of the Olfm1 gene is still unclear. Here, we produced and analyzed a null zebrafish mutant of both olfm1a and olfm1b genes (olfm1 null). olfm1 null fish were born at a normal Mendelian ratio and showed normal body shape and fertility as well as no visible defects from larval stages to adult. Olfm1 proteins were preferentially localized in the synaptosomes of the adult brain. Olfm1 co-immunoprecipitated with GluR2 and soluble NSF attachment protein receptor complexes indicating participation of Olfm1 in both pre- and post-synaptic events. Phosphorylation of GluR2 was not changed while palmitoylation of GluR2 was decreased in the brain synaptosomal membrane fraction of olfm1 null compared with wt fish. The levels of GluR2, SNAP25, flotillin1, and VAMP2 were markedly reduced in the synaptic microdomain of olfm1 null brain compared with wt. The internalization of GluR2 in retinal cells and the localization of VAMP2 in brain synaptosome were modified by olfm1 null mutation. This indicates that Olfm1 may regulate receptor trafficking from the intracellular compartments to the synaptic membrane microdomain, partly through the alteration of post-translational GluR2 modifications such as palmitoylation. Olfm1 may be considered a novel regulator of the composition and function of the α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor complex.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: