Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance.

  • Bo Zhang‎ et al.
  • eLife‎
  • 2017‎

Both light and temperature have dramatic effects on plant development. Phytochrome photoreceptors regulate plant responses to the environment in large part by controlling the abundance of PHYTOCHROME INTERACTING FACTOR (PIF) transcription factors. However, the molecular determinants of this essential signaling mechanism still remain largely unknown. Here, we present evidence that the BLADE-ON-PETIOLE (BOP) genes, which have previously been shown to control leaf and flower development in Arabidopsis, are involved in controlling the abundance of PIF4. Genetic analysis shows that BOP2 promotes photo-morphogenesis and modulates thermomorphogenesis by suppressing PIF4 activity, through a reduction in PIF4 protein level. In red-light-grown seedlings PIF4 ubiquitination was reduced in the bop2 mutant. Moreover, we found that BOP proteins physically interact with both PIF4 and CULLIN3A and that a CULLIN3-BOP2 complex ubiquitinates PIF4 in vitro. This shows that BOP proteins act as substrate adaptors in a CUL3BOP1/BOP2 E3 ubiquitin ligase complex, targeting PIF4 proteins for ubiquitination and subsequent degradation.


Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter.

  • Hui Chen‎ et al.
  • Nucleic acids research‎
  • 2014‎

Increasing evidence indicates that active DNA demethylation is involved in several processes in mammals, resulting in developmental stage-specificity and cell lineage-specificity. The recently discovered Ten-Eleven Translocation (TET) dioxygenases are accepted to be involved in DNA demethylation by initiating 5-mC oxidation. Aberrant DNA methylation profiles are associated with many diseases. For example in cancer, hypermethylation results in silencing of tumor suppressor genes. Such silenced genes can be re-expressed by epigenetic drugs, but this approach has genome-wide effects. In this study, fusions of designer DNA binding domains to TET dioxygenase family members (TET1, -2 or -3) were engineered to target epigenetically silenced genes (ICAM-1, EpCAM). The effects on targeted CpGs' methylation and on expression levels of the target genes were assessed. The results indicated demethylation of targeted CpG sites in both promoters for targeted TET2 and to a lesser extent for TET1, but not for TET3. Interestingly, we observed re-activation of transcription of ICAM-1. Thus, our work suggests that we provided a mechanism to induce targeted DNA demethylation, which facilitates re-activation of expression of the target genes. Furthermore, this Epigenetic Editing approach is a powerful tool to investigate functions of epigenetic writers and erasers and to elucidate consequences of epigenetic marks.


Preclinical evaluation of Affibody molecule for PET imaging of human pancreatic islets derived from stem cells.

  • Pierre Cheung‎ et al.
  • EJNMMI research‎
  • 2023‎

Beta-cell replacement methods such as transplantation of isolated donor islets have been proposed as a curative treatment of type 1 diabetes, but widespread application is challenging due to shortages of donor tissue and the need for continuous immunosuppressive treatments. Stem-cell-derived islets have been suggested as an alternative source of beta cells, but face transplantation protocols optimization difficulties, mainly due to a lack of available methods and markers to directly monitor grafts survival, as well as their localization and function. Molecular imaging techniques and particularly positron emission tomography has been suggested as a tool for monitoring the fate of islets after clinical transplantation. The integral membrane protein DGCR2 has been demonstrated to be a potential pancreatic islet biomarker, with specific expression on insulin-positive human embryonic stem-cell-derived pancreatic progenitor cells. The candidate Affibody molecule ZDGCR2:AM106 was radiolabeled with fluorine-18 using a novel click chemistry-based approach. The resulting positron emission tomography tracer [18F]ZDGCR2:AM106 was evaluated for binding to recombinant human DGCR2 and cryosections of stem-cell-derived islets, as well as in vivo using an immune-deficient mouse model transplanted with stem-cell-derived islets. Biodistribution of the [18F]ZDGCR2:AM106 was also assessed in healthy rats and pigs.


The chromatin-modifying protein HUB2 is involved in the regulation of lignin composition in xylem vessels.

  • Bo Zhang‎ et al.
  • Journal of experimental botany‎
  • 2020‎

PIRIN2 (PRN2) was earlier reported to suppress syringyl (S)-type lignin accumulation of xylem vessels of Arabidopsis thaliana. In the present study, we report yeast two-hybrid results supporting the interaction of PRN2 with HISTONE MONOUBIQUITINATION2 (HUB2) in Arabidopsis. HUB2 has been previously implicated in several plant developmental processes, but not in lignification. Interaction between PRN2 and HUB2 was verified by β-galactosidase enzymatic and co-immunoprecipitation assays. HUB2 promoted the deposition of S-type lignin in the secondary cell walls of both stem and hypocotyl tissues, as analysed by pyrolysis-GC/MS. Chemical fingerprinting of individual xylem vessel cell walls by Raman and Fourier transform infrared microspectroscopy supported the function of HUB2 in lignin deposition. These results, together with a genetic analysis of the hub2 prn2 double mutant, support the antagonistic function of PRN2 and HUB2 in deposition of S-type lignin. Transcriptome analyses indicated the opposite regulation of the S-type lignin biosynthetic gene FERULATE-5-HYDROXYLASE1 by PRN2 and HUB2 as the underlying mechanism. PRN2 and HUB2 promoter activities co-localized in cells neighbouring the xylem vessel elements, suggesting that the S-type lignin-promoting function of HUB2 is antagonized by PRN2 for the benefit of the guaiacyl (G)-type lignin enrichment of the neighbouring xylem vessel elements.


Regulatory network decoded from epigenomes of surface ectoderm-derived cell types.

  • Rebecca F Lowdon‎ et al.
  • Nature communications‎
  • 2014‎

Developmental history shapes the epigenome and biological function of differentiated cells. Epigenomic patterns have been broadly attributed to the three embryonic germ layers. Here we investigate how developmental origin influences epigenomes. We compare key epigenomes of cell types derived from surface ectoderm (SE), including keratinocytes and breast luminal and myoepithelial cells, against neural crest-derived melanocytes and mesoderm-derived dermal fibroblasts, to identify SE differentially methylated regions (SE-DMRs). DNA methylomes of neonatal keratinocytes share many more DMRs with adult breast luminal and myoepithelial cells than with melanocytes and fibroblasts from the same neonatal skin. This suggests that SE origin contributes to DNA methylation patterning, while shared skin tissue environment has limited effect on epidermal keratinocytes. Hypomethylated SE-DMRs are in proximity to genes with SE relevant functions. They are also enriched for enhancer- and promoter-associated histone modifications in SE-derived cells, and for binding motifs of transcription factors important in keratinocyte and mammary gland biology. Thus, epigenomic analysis of cell types with common developmental origin reveals an epigenetic signature that underlies a shared gene regulatory network.


Establishing energy requirements for body weight maintenance: validation of an intake-balance method.

  • Steven B Heymsfield‎ et al.
  • BMC research notes‎
  • 2017‎

Experimentally establishing a group's body weight maintenance energy requirement is an important component of metabolism research. At present, the reference approach for measuring the metabolizable energy intake (MEI) from foods required for body weight maintenance in non-confined subjects is the doubly-labeled water (DLW)-total energy expenditure (TEE) method. In the current study, we evaluated an energy-intake weight balance method as an alternative to DLW that is more flexible and practical to apply in some settings.


Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer.

  • Sabine Stolzenburg‎ et al.
  • Nucleic acids research‎
  • 2012‎

The transcription factor (TF) SOX2 is essential for the maintenance of pluripotency and self-renewal in embryonic stem cells. In addition to its normal stem cell function, SOX2 over-expression is associated with cancer development. The ability to selectively target this and other oncogenic TFs in cells, however, remains a significant challenge due to the 'undruggable' characteristics of these molecules. Here, we employ a zinc finger (ZF)-based artificial TF (ATF) approach to selectively suppress SOX2 gene expression in cancer cells. We engineered four different proteins each composed of 6ZF arrays designed to bind 18 bp sites in the SOX2 promoter and enhancer region, which controls SOX2 methylation. The 6ZF domains were linked to the Kruppel Associated Box (SKD) repressor domain. Three engineered proteins were able to bind their endogenous target sites and effectively suppress SOX2 expression (up to 95% repression efficiencies) in breast cancer cells. Targeted down-regulation of SOX2 expression resulted in decreased tumor cell proliferation and colony formation in these cells. Furthermore, induced expression of an ATF in a mouse model inhibited breast cancer cell growth. Collectively, these findings demonstrate the effectiveness and therapeutic potential of engineered ATFs to mediate potent and long-lasting down-regulation of oncogenic TF expression in cancer cells.


Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation.

  • Matthew R Grimmer‎ et al.
  • Nucleic acids research‎
  • 2014‎

Artificial transcription factors (ATFs) and genomic nucleases based on a DNA binding platform consisting of multiple zinc finger domains are currently being developed for clinical applications. However, no genome-wide investigations into their binding specificity have been performed. We have created six-finger ATFs to target two different 18 nt regions of the human SOX2 promoter; each ATF is constructed such that it contains or lacks a super KRAB domain (SKD) that interacts with a complex containing repressive histone methyltransferases. ChIP-seq analysis of the effector-free ATFs in MCF7 breast cancer cells identified thousands of binding sites, mostly in promoter regions; the addition of an SKD domain increased the number of binding sites ∼ 5-fold, with a majority of the new sites located outside of promoters. De novo motif analyses suggest that the lack of binding specificity is due to subsets of the finger domains being used for genomic interactions. Although the ATFs display widespread binding, few genes showed expression differences; genes repressed by the ATF-SKD have stronger binding sites and are more enriched for a 12 nt motif. Interestingly, epigenetic analyses indicate that the transcriptional repression caused by the ATF-SKD is not due to changes in active histone modifications.


PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis.

  • Bo Zhang‎ et al.
  • The Plant journal : for cell and molecular biology‎
  • 2014‎

PIRIN (PRN) is a member of the functionally diverse cupin protein superfamily. There are four members of the Arabidopsis thaliana PRN family, but the roles of these proteins are largely unknown. Here we describe a function of the Arabidopsis PIRIN2 (PRN2) that is related to susceptibility to the bacterial plant pathogen Ralstonia solanacearum. Two prn2 mutant alleles displayed decreased disease development and bacterial growth in response to R.  solanacearum infection. We elucidated the underlying molecular mechanism by analyzing PRN2 interactions with the papain-like cysteine proteases (PLCPs) XCP2, RD21A, and RD21B, all of which bound to PRN2 in yeast two-hybrid assays and in Arabidopsis protoplast co-immunoprecipitation assays. We show that XCP2 is stabilized by PRN2 through inhibition of its autolysis on the basis of PLCP activity profiling assays and enzymatic assays with recombinant protein. The stabilization of XCP2 by PRN2 was also confirmed in planta. Like prn2 mutants, an xcp2 single knockout mutant and xcp2 prn2 double knockout mutant displayed decreased susceptibility to R. solanacearum, suggesting that stabilization of XCP2 by PRN2 underlies susceptibility to R. solanacearum in Arabidopsis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: