Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Estrogen signalling and the metabolic syndrome: targeting the hepatic estrogen receptor alpha action.

  • Marko Matic‎ et al.
  • PloS one‎
  • 2013‎

An increasing body of evidence now links estrogenic signalling with the metabolic syndrome (MS). Despite the beneficial estrogenic effects in reversing some of the MS symptoms, the underlying mechanisms remain largely undiscovered. We have previously shown that total estrogen receptor alpha (ERα) knockout (KO) mice exhibit hepatic insulin resistance. To determine whether liver-selective ablation of ERα recapitulates metabolic phenotypes of ERKO mice we generated a liver-selective ERαKO mouse model, LERKO. We demonstrate that LERKO mice have efficient reduction of ERα selectively within the liver. However, LERKO and wild type control mice do not differ in body weight, and have a comparable hormone profile as well as insulin and glucose response, even when challenged with a high fat diet. Furthermore, LERKO mice display very minor changes in their hepatic transcript profile. Collectively, our findings indicate that hepatic ERα action may not be the responsible factor for the previously identified hepatic insulin resistance in ERαKO mice.


Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

  • Jong Hyun Kim‎ et al.
  • PloS one‎
  • 2010‎

Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK) is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated.


Contribution of endothelial injury and inflammation in early phase to vein graft failure: the causal factors impact on the development of intimal hyperplasia in murine models.

  • Chi-Nan Tseng‎ et al.
  • PloS one‎
  • 2014‎

Autologous veins are preferred conduits in by-pass surgery. However, long-term results are hampered by limited patency due to intimal hyperplasia. Although mechanisms involved in development of intimal hyperplasia have been established, the role of inflammatory processes is still unclear. Here, we studied leukocyte recruitment and intimal hyperplasia in inferior vena cava grafts transferred to abdominal aorta in mice.


Isolation of Foreign Material-Free Endothelial Progenitor Cells Using CD31 Aptamer and Therapeutic Application for Ischemic Injury.

  • Jung Won Yoon‎ et al.
  • PloS one‎
  • 2015‎

Endothelial progenitor cells (EPCs) can be isolated from human bone marrow or peripheral blood and reportedly contribute to neovascularization. Aptamers are 40-120-mer nucleotides that bind to a specific target molecule, as antibodies do. To utilize apatmers for isolation of EPCs, in the present study, we successfully generated aptamers that recognize human CD31, an endothelial cell marker. CD31 aptamers bound to human umbilical cord blood-derived EPCs and showed specific interaction with human CD31, but not with mouse CD31. However, CD31 aptamers showed non-specific interaction with CD31-negative 293FT cells and addition of polyanionic competitor dextran sulfate eliminated non-specific interaction without affecting cell viability. From the mixture of EPCs and 293FT cells, CD31 aptamers successfully isolated EPCs with 97.6% purity and 94.2% yield, comparable to those from antibody isolation. In addition, isolated EPCs were decoupled from CD31 aptamers with a brief treatment of high concentration dextran sulfate. EPCs isolated with CD31 aptamers and subsequently decoupled from CD31 aptamers were functional and enhanced the restoration of blood flow when transplanted into a murine hindlimb ischemia model. In this study, we demonstrated isolation of foreign material-free EPCs, which can be utilized as a universal protocol in preparation of cells for therapeutic transplantation.


Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices.

  • Ulrika Johansson‎ et al.
  • PloS one‎
  • 2015‎

Transplantation of pancreatic islets is one approach for treatment of diabetes, however, hampered by the low availability of viable islets. Islet isolation leads to disruption of the environment surrounding the endocrine cells, which contributes to eventual cell death. The reestablishment of this environment is vital, why we herein investigated the possibility of using recombinant spider silk to support islets in vitro after isolation. The spider silk protein 4RepCT was formulated into three different formats; 2D-film, fiber mesh and 3D-foam, in order to provide a matrix that can give the islets physical support in vitro. Moreover, cell-binding motifs from laminin were incorporated into the silk protein in order to create matrices that mimic the natural cell environment. Pancreatic mouse islets were thoroughly analyzed for adherence, necrosis and function after in vitro maintenance on the silk matrices. To investigate their suitability for transplantation, we utilized an eye model which allows in vivo imaging of engraftment. Interestingly, islets that had been maintained on silk foam during in vitro culture showed improved revascularization. This coincided with the observation of preserved islet architecture with endothelial cells present after in vitro culture on silk foam. Selected matrices were further evaluated for long-term preservation of human islets. Matrices with the cell-binding motif RGD improved human islet maintenance (from 36% to 79%) with preserved islets architecture and function for over 3 months in vitro. The islets established cell-matrix contacts and formed vessel-like structures along the silk. Moreover, RGD matrices promoted formation of new, insulin-positive islet-like clusters that were connected to the original islets via endothelial cells. On silk matrices with islets from younger donors (<35 year), the amount of newly formed islet-like clusters found after 1 month in culture were almost double compared to the initial number of islets added.


Determination of EGFR endocytosis kinetic by auto-regulatory association of PLD1 with mu2.

  • Jun Sung Lee‎ et al.
  • PloS one‎
  • 2009‎

Upon ligand binding, cell surface signaling receptors are internalized through a process tightly regulated by endocytic proteins and adaptor protein 2 (AP2) to orchestrate them. Although the molecular identities and roles of endocytic proteins are becoming clearer, it is still unclear what determines the receptor endocytosis kinetics which is mainly regulated by the accumulation of endocytic apparatus to the activated receptors.


Short telomeres compromise β-cell signaling and survival.

  • Nini Guo‎ et al.
  • PloS one‎
  • 2011‎

The genetic factors that underlie the increasing incidence of diabetes with age are poorly understood. We examined whether telomere length, which is inherited and known to shorten with age, plays a role in the age-dependent increased incidence of diabetes. We show that in mice with short telomeres, insulin secretion is impaired and leads to glucose intolerance despite the presence of an intact β-cell mass. In ex vivo studies, short telomeres induced cell-autonomous defects in β-cells including reduced mitochondrial membrane hyperpolarization and Ca(2+) influx which limited insulin release. To examine the mechanism, we looked for evidence of apoptosis but found no baseline increase in β-cells with short telomeres. However, there was evidence of all the hallmarks of senescence including slower proliferation of β-cells and accumulation of p16(INK4a). Specifically, we identified gene expression changes in pathways which are essential for Ca(2+)-mediated exocytosis. We also show that telomere length is additive to the damaging effect of endoplasmic reticulum stress which occurs in the late stages of type 2 diabetes. This additive effect manifests as more severe hyperglycemia in Akita mice with short telomeres which had a profound loss of β-cell mass and increased β-cell apoptosis. Our data indicate that short telomeres can affect β-cell metabolism even in the presence of intact β-cell number, thus identifying a novel mechanism of telomere-mediated disease. They implicate telomere length as a determinant of β-cell function and diabetes pathogenesis.


Computational design of binding proteins to EGFR domain II.

  • Yoon Sup Choi‎ et al.
  • PloS one‎
  • 2014‎

We developed a process to produce novel interactions between two previously unrelated proteins. This process selects protein scaffolds and designs protein interfaces that bind to a surface patch of interest on a target protein. Scaffolds with shapes complementary to the target surface patch were screened using an exhaustive computational search of the human proteome and optimized by directed evolution using phage display. This method was applied to successfully design scaffolds that bind to epidermal growth factor receptor (EGFR) domain II, the interface of EGFR dimerization, with high reactivity toward the target surface patch of EGFR domain II. One potential application of these tailor-made protein interactions is the development of therapeutic agents against specific protein targets.


Mouse Sphingosine Kinase 1a Is Negatively Regulated through Conventional PKC-Dependent Phosphorylation at S373 Residue.

  • Yong-Seok Oh‎ et al.
  • PloS one‎
  • 2015‎

Sphingosine kinase is a lipid kinase that converts sphingosine into sphingosine-1-phosphate, an important signaling molecule with intracellular and extracellular functions. Although diverse extracellular stimuli influence cellular sphingosine kinase activity, the molecular mechanisms underlying its regulation remain to be clarified. In this study, we investigated the phosphorylation-dependent regulation of mouse sphingosine kinase (mSK) isoforms 1 and 2. mSK1a was robustly phosphorylated in response to extracellular stimuli such as phorbol ester, whereas mSK2 exhibited a high basal level of phosphorylation in quiescent cells regardless of agonist stimulation. Interestingly, phorbol ester-induced phosphorylation of mSK1a correlated with suppression of its activity. Chemical inhibition of conventional PKCs (cPKCs) abolished mSK1a phosphorylation, while overexpression of PKCα, a cPKC isoform, potentiated the phosphorylation, in response to phorbol ester. Furthermore, an in vitro kinase assay showed that PKCα directly phosphorylated mSK1a. In addition, phosphopeptide mapping analysis determined that the S373 residue of mSK1a was the only site phosphorylated by cPKC. Interestingly, alanine substitution of S373 made mSK1a refractory to the inhibitory effect of phorbol esters, whereas glutamate substitution of the same residue resulted in a significant reduction in mSK1a activity, suggesting the significant role of this phosphorylation event. Taken together, we propose that mSK1a is negatively regulated through cPKC-dependent phosphorylation at S373 residue.


Xanthene derivatives increase glucose utilization through activation of LKB1-dependent AMP-activated protein kinase.

  • Yonghoon Kwon‎ et al.
  • PloS one‎
  • 2014‎

5' AMP-activated protein kinase (AMPK) is a highly conserved serine-threonine kinase that regulates energy expenditure by activating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. Therefore AMPK activators are considered to be drug targets for treatment of metabolic diseases such as diabetes mellitus. To identify novel AMPK activators, we screened xanthene derivatives. We determined that the AMPK activators 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-nitro-phenyl)-thioureido]-ethyl}-amide (Xn) and 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-cyano-phenyl)-thioureido]-ethyl}-amide (Xc) elevated glucose uptake in L6 myotubes by stimulating translocation of glucose transporter type 4 (GLUT4). Treatment with the chemical AMPK inhibitor compound C and infection with dominant-negative AMPKa2-virus inhibited AMPK phosphorylation and glucose uptake in myotubes induced by either Xn or Xc. Of the two major upstream kinases of AMPK, we found that Xn and Xc showed LKB1 dependency by knockdown of STK11, an ortholog of human LKB1. Single intravenous administration of Xn and Xc to high-fat diet-induced diabetic mice stimulated AMPK phosphorylation of skeletal muscle and improved glucose tolerance. Taken together, these results suggest that Xn and Xc regulate glucose homeostasis through LKB1-dependent AMPK activation and that the compounds are potential candidate drugs for the treatment of type 2 diabetes mellitus.


Phase modulation of insulin pulses enhances glucose regulation and enables inter-islet synchronization.

  • Boah Lee‎ et al.
  • PloS one‎
  • 2017‎

Insulin is secreted in a pulsatile manner from multiple micro-organs called the islets of Langerhans. The amplitude and phase (shape) of insulin secretion are modulated by numerous factors including glucose. The role of phase modulation in glucose homeostasis is not well understood compared to the obvious contribution of amplitude modulation. In the present study, we measured Ca2+ oscillations in islets as a proxy for insulin pulses, and we observed their frequency and shape changes under constant/alternating glucose stimuli. Here we asked how the phase modulation of insulin pulses contributes to glucose regulation. To directly answer this question, we developed a phenomenological oscillator model that drastically simplifies insulin secretion, but precisely incorporates the observed phase modulation of insulin pulses in response to glucose stimuli. Then, we mathematically modeled how insulin pulses regulate the glucose concentration in the body. The model of insulin oscillation and glucose regulation describes the glucose-insulin feedback loop. The data-based model demonstrates that the existence of phase modulation narrows the range within which the glucose concentration is maintained through the suppression/enhancement of insulin secretion in conjunction with the amplitude modulation of this secretion. The phase modulation is the response of islets to glucose perturbations. When multiple islets are exposed to the same glucose stimuli, they can be entrained to generate synchronous insulin pulses. Thus, we conclude that the phase modulation of insulin pulses is essential for glucose regulation and inter-islet synchronization.


Insulin modulates the frequency of Ca2+ oscillations in mouse pancreatic islets.

  • Boah Lee‎ et al.
  • PloS one‎
  • 2017‎

Pancreatic islets can adapt to oscillatory glucose to produce synchronous insulin pulses. Can islets adapt to other oscillatory stimuli, specifically insulin? To answer this question, we stimulated islets with pulses of exogenous insulin and measured their Ca2+ oscillations. We observed that sufficiently high insulin (> 500 nM) with an optimal pulse period (~ 4 min) could make islets to produce synchronous Ca2+ oscillations. Glucose and insulin, which are key stimulatory factors of islets, modulate islet Ca2+ oscillations differently. Glucose increases the active-to-silent ratio of phases, whereas insulin increases the period of the oscillation. To examine the dual modulation, we adopted a phase oscillator model that incorporated the phase and frequency modulations. This mathematical model showed that out-of-phase oscillations of glucose and insulin were more effective at synchronizing islet Ca2+ oscillations than in-phase stimuli. This finding suggests that a phase shift in glucose and insulin oscillations can enhance inter-islet synchronization.


Two pathways are required for ultrasound-evoked behavioral changes in Caenorhabditis elegans.

  • Uri Magaram‎ et al.
  • PloS one‎
  • 2022‎

Ultrasound has been shown to affect the function of both neurons and non-neuronal cells, but, the underlying molecular machinery has been poorly understood. Here, we show that at least two mechanosensitive proteins act together to generate C. elegans behavioral responses to ultrasound stimuli. We first show that these animals generate reversals in response to a single 10 msec pulse from a 2.25 MHz ultrasound transducer. Next, we show that the pore-forming subunit of the mechanosensitive channel TRP-4, and a DEG/ENaC/ASIC ion channel MEC-4, are both required for this ultrasound-evoked reversal response. Further, the trp-4;mec-4 double mutant shows a stronger behavioral deficit compared to either single mutant. Finally, overexpressing TRP-4 in specific chemosensory neurons can rescue the ultrasound-triggered behavioral deficit in the mec-4 null mutant, suggesting that both TRP-4 and MEC-4 act together in affecting behavior. Together, we demonstrate that multiple mechanosensitive proteins likely cooperate to transform ultrasound stimuli into behavioral changes.


aP2-Cre-mediated inactivation of estrogen receptor alpha causes hydrometra.

  • Per Antonson‎ et al.
  • PloS one‎
  • 2014‎

In this study we describe the reproductive phenotypes of a novel mouse model in which Cre-mediated deletion of ERα is regulated by the aP2 (fatty acid binding protein 4) promoter. ERα-floxed mice were crossed with transgenic mice expressing Cre-recombinase under the control of the aP2 promoter to generate aP2-Cre/ERα(flox/flox) mice. As expected, ERα mRNA levels were reduced in adipose tissue, but in addition we also detected an 80% reduction of ERα levels in the hypothalamus of aP2-Cre/ERα(flox/flox) mice. Phenotypic analysis revealed that aP2-Cre/ERα(flox/flox) female mice were infertile. In line with this, aP2-Cre/ERα(flox/flox) female mice did not cycle and presented 3.8-fold elevated estrogen levels. That elevated estrogen levels were associated with increased estrogen signaling was evidenced by increased mRNA levels of the estrogen-regulated genes lactoferrin and aquaporin 5 in the uterus. Furthermore, aP2-Cre/ERα(flox/flox) female mice showed an accumulation of intra-uterine fluid, hydrometra, without overt indications for causative anatomical anomalies. However, the vagina and cervix displayed advanced keratosis with abnormal quantities of accumulating squamous epithelial cells suggesting functional obstruction by keratin plugs. Importantly, treatment of aP2-Cre/ERα(flox/flox) mice with the aromatase inhibitor Letrozole caused regression of the hydrometra phenotype linking increased estrogen levels to the observed phenotype. We propose that in aP2-Cre/ERα(flox/flox) mice, increased serum estrogen levels cause over-stimulation in the uterus and genital tracts resulting in hydrometra and vaginal obstruction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: