Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

Overexpression of complement component C5a accelerates the development of atherosclerosis in ApoE-knockout mice.

  • Guipeng An‎ et al.
  • Oncotarget‎
  • 2016‎

In this study, we investigated the direct effect of C5a overexpression on atherosclerosis.


Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1.

  • Jingyuan Li‎ et al.
  • Oncotarget‎
  • 2016‎

Sirt3, a mitochondrial NAD+-dependent histone deacetylase, is the only member proven to promote longevity in mammalian Sirtuin family. The processed short form of Sirt3 has been demonstrated to target many mediators of energy metabolism and mitochondrial stress adaptive program. Autophagy serves as a dynamic recycling mechanism and provides energy or metabolic substrates. Among the mechanisms triggered by cardiac stress, opinions vary as to whether autophagy is a protective or detrimental response. Here, by inducing the Sirt3-knockout mice to myocardial hypertrophy with chronic angiotensin II infusion for four weeks, we determined the role of Sirt3 in myocardial hypertrophy and autophagy. In this study, the Sirt3-knockout mice developed deteriorated cardiac function and impaired autophagy compared to wild-type mice. What's more, the overexpression of Sirt3 by lentivirus transfection attenuated cardiomyocytes hypertrophy by promoting autophagy. We further demonstrated that Sirt3 could bind to FoxO1 and activate its deacetylation. Sequentially, deacetylated FoxO1 translocates to the nucleus where it facilitates downstream E3 ubiquitin ligases such as Muscle RING Finger 1 (MuRF1) and muscle atrophy F-box (MAFbx, Atrogin1). Altogether, these results revealed that Sirt3 activation is essential to improve autophagy flux by reducing the acetylation modification on FoxO1, which in turn alleviates myocardial hypertrophy.


Prognostic value of long non-coding RNA PVT1 as a novel biomarker in various cancers: a meta-analysis.

  • Shikai Zhu‎ et al.
  • Oncotarget‎
  • 2017‎

Plasmacytoma variant translocation 1 (PVT1) has recently been reported to be aberrantly expressed and serves as a prognostic biomarker in many types of cancers. However, its prognostic significance remains controversial. Here, we conducted a meta-analysis to investigate the prognostic value of PVT1 expression in cancers.


MicroRNA-143-3p, up-regulated in H. pylori-positive gastric cancer, suppresses tumor growth, migration and invasion by directly targeting AKT2.

  • Fang Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Our previous studies have suggested a protective role for H. pylori infection in the prognosis of gastric cancer. Based on those findings, we hypothesized that H. pylori-positive and -negative gastric cancers may exhibit different growth patterns and pathobiological behaviors, indicating different mechanisms of cancer progression. By microarray analysis, we studied miRNAs expression profiles in 42 gastric cancer patients, comparing 21 H. pylori-positive and 21 H. pylori-negative groups. Luciferase reporter assay and western blot were used to examine the potential target genes of the interested miRNA. In the present study, 53 miRNAs were significantly differentially expressed in H. pylori-positive and -negative gastric cancer tissues. We investigated the expression and function of one candidate, miR-143-3p, which was the most significantly increased miRNA in H. pylori-positive gastric cancer tissues. We observed that miR-143-3p expression was significantly decreased in gastric cancer tissues and cells, which correlated with late stage and lymph node metastasis. Using gain- and loss-of-function experiments in vitro, we demonstrate that miR-143-3p negatively regulated cell growth, apoptosis, migration and invasion. We further characterized AKT2 as a novel direct target of miR-143-3p. Knockdown of AKT2 expression mimicked the effects of miR-143-3p restoration. In conclusion, our data suggest that miR-143-3p acts as a novel tumor suppressive miRNA by regulating tumor growth, migration and invasion through directly targeting AKT2 gene. Further investigation is warranted to characterize the mechanisms underlying gastric cancer progression and may eventually contribute to its therapy.


Single nucleotide polymorphisms in CIDEC gene are associated with metabolic syndrome components risks and antihypertensive drug efficacy.

  • Hui Wang‎ et al.
  • Oncotarget‎
  • 2017‎

The association of single nucleotide polymorphisms rs1053239 and rs2479 of cell death-inducing DFFA-like effector c with the risk of metabolic syndrome and its components, and with the efficacy and cost-effectiveness of antihypertensive drugs was investigated. Totally 1064 subjects with metabolic syndrome and 1099 controls of Chinese Han nationality were recruited. Clinical assessment was conducted with medication records collected at baseline and during 5-year follow-up. Carriers of rs2479 A allele were at higher risk to develop elevated fasting glucose than non-carriers (P = 0.004). A allele at rs2479 were associated with a 5-year aggravation of blood triglyceride (P < 0.001) and diastolic blood pressure (P = 0.003), and C allele at rs1053239 with the exacerbation of systolic (P < 0.001) and diastolic blood pressure (P = 0.001). Moreover, efficacy and cost-effectiveness of angiotensin II-targeted drugs were higher in subjects with rs2479 A allele or rs1053239 C allele. These findings suggest that carriers of rs2479 A allele are predisposed to the development of increased fasting glucose, and the progressive elevation of blood triglyceride. Individuals with A allele at rs2479 or C allele at rs1053239 are more susceptible to a rapid progression of blood pressure, and benefit more from angiotensin II-targeted therapy.


Exosomes derived from gefitinib-treated EGFR-mutant lung cancer cells alter cisplatin sensitivity via up-regulating autophagy.

  • Xiao-Qiu Li‎ et al.
  • Oncotarget‎
  • 2016‎

Several clinical trials indicate that concurrent administration of tyrosine kinase inhibitors (TKIs, such as gefitinib or erlotinib) with chemotherapy agents fails to improve overall survival in advanced non-small cell lung cancer (NSCLC) patients. However, the precise mechanisms underlying the antagonistic effects remain unclear. In the present study, we investigated the role of exosomes in the antagonistic effects of concurrent administration of chemotherapy and TKIs. Exosomes derived from gefitinib-treated PC9 cells (Exo-GF) decreased the antitumor effects of cisplatin, while exosomes derived from cisplatin-treated PC9 cells (Exo-DDP) did not significantly affect the antitumor effects of gefitinib. Additionally, inhibition of exosome secretion by GW4869 resulted in a modest synergistic effect when cisplatin and gefitinib were co-administered. Furthermore, Exo-GF co-incubation with cisplatin increased autophagic activity and reduced apoptosis, as demonstrated by an upregulation of LC3-II and Bcl-2 protein levels and downregulation of p62 and Bax protein levels. Thus, the antagonistic effects of gefitinib and cisplatin were mainly attributed to Exo-GF, which resulted in upregulated autophagy and increased cisplatin resistance. These results suggest that inhibition of exosome secretion may be a helpful strategy to overcome the antagonistic effects when TKIs and chemotherapeutic agents are co-administered. Before administering chemotherapy, introducing a washout period to completely eliminate TKI-related exosomes, may be a better procedure for administering chemotherapy and TKIs.


MiR-148a functions to suppress metastasis and serves as a prognostic indicator in triple-negative breast cancer.

  • Xin Xu‎ et al.
  • Oncotarget‎
  • 2016‎

Triple-negative breast cancer (TNBC) presents a major challenge in the clinic due to its lack of reliable prognostic markers and targeted therapies. Accumulating evidence strongly supports the notion that microRNAs (miRNAs) are involved in tumorigenesis and could serve as biomarkers for diagnostic purposes. To identify miRNAs that functionally suppress metastasis of TNBC, we employed a concerted approach with selecting miRNAs that display differential expression profiles from bioinformatic analyses of breast cancer patient databases and validating top candidates with functional assays using breast cancer cell lines and mouse models. We have found that miR-148a exhibits properties as a tumor suppressor as its expression is inversely correlated with the ability of both human and mouse breast cancer cells to colonize the lung in mouse xenograft tumor models. Mechanistically, miR-148a appears to suppress the extravasation process of cancer cells, likely by targeting two genes WNT1 and NRP1 in a cell non-autonomous manner. Importantly, lower expression of miR-148a is detected in higher-grade tumor samples and correlated with increased likelihood to develop metastases and poor prognosis in subsets of breast cancer patients, particularly those with TNBC. Thus, miR-148a is functionally defined as a suppressor of breast cancer metastasis and may serve as a prognostic biomarker for this disease.


CD226 ligation protects against EAE by promoting IL-10 expression via regulation of CD4+ T cell differentiation.

  • Rong Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

Treatment targeting CD226 can ameliorate experimental autoimmune encephalomyelitis (EAE), the widely accepted model of MS. However, the mechanisms still need to be elucidated. Here we showed that CD226 blockage by anti-CD226 blocking mAb LeoA1 efficiently promoted IL-10 production in human peripheral blood monocytes (PBMC) or in mixed lymphocyte culture (MLC) system, significantly induced the CD4+IL-10+ T cell differentiation while suppressing the generation of Th1 and Th17. Furthermore, CD226 pAb administration in vivo reduced the onset of EAE in mice by promoting IL-10 production and regulating T cell differentiation. Concomitantly, the onset and severity of EAE were reduced and the serum IL-10 expression levels were increased in CD226 knockout mice than that in control mice when both received EAE induction. These novel findings confirmed that CD226 played a pivotal role in mediating autoimmune diseases such as EAE. Furthermore, to our knowledge, we show for the first time that IL-10 is an important contributor in the inhibitory effects of CD226 ligation on EAE.


Inhibition of Bcl-xL overcomes polyploidy resistance and leads to apoptotic cell death in acute myeloid leukemia cells.

  • Weihua Zhou‎ et al.
  • Oncotarget‎
  • 2015‎

Small molecular inhibitors or drugs targeting specific molecular alterations are widely used in clinic cancer therapy. Despite the success of targeted therapy, the development of drug resistance remains a challenging problem. Identifying drug resistance mechanisms for targeted therapy is an area of intense investigation, and recent evidence indicates that cellular polyploidy may be involved. Here, we demonstrate that the cell cycle kinase inhibitor, Oxindole-1 (Ox-1), induces mitotic slippage, causing resistant polyploidy in acute myeloid leukemia (AML) cells. Indeed, Ox-1 decreases the kinase activity of CDK1 (CDC2)/cyclin B1, leading to inhibition of Bcl-xL phosphorylation and subsequent resistance to apoptosis. Addition of ABT-263, a Bcl-2 family inhibitor, to Ox-1, or the other polyploidy-inducer, ZM447439 (ZM), produces a synergistic loss of cell viability with greater sustained tumor growth inhibition in AML cell lines and primary AML blasts. Furthermore, genetic knockdown of Bcl-xL, but not Bcl-2, exhibited synergistic inhibition of cell growth in combination with Ox-1 or ZM. These data demonstrate that Bcl-xL is a key factor in polyploidization resistance in AML, and that suppression of Bcl-xL by ABT-263, or siRNAs, may hold therapeutic utility in drug-resistant polyploid AML cells.


Guttiferone K suppresses cell motility and metastasis of hepatocellular carcinoma by restoring aberrantly reduced profilin 1.

  • Kaikai Shen‎ et al.
  • Oncotarget‎
  • 2016‎

Hepatocellular carcinoma (HCC) is an aggressive malignancy and the 5-year survival rate of advanced HCC is < 10%. Guttiferone K (GUTK) isolated from the Garcinia genus inhibited HCC cells migration and invasion in vitro and metastasis in vivo without apparent toxicity. Proteomic analysis revealed that actin-binding protein profilin 1 (PFN1) was markedly increased in the presence of GUTK. Over-expression of PFN1 mimicked the effect of GUTK on HCC cell motility and metastasis. The effect of GUTK on cell motility was diminished when PFN1 was over-expressed or silenced. Over-expression of PFN1 or incubation with GUTK decreased F-actin levels and the expression of proteins involved in actin nucleation, branching and polymerization. Moreover, a reduction of PFN1 protein levels was common in advanced human HCC and associated with poor survival rate. In conclusion, GUTK effectively suppresses the motility and metastasis of HCC cells mainly by restoration of aberrantly reduced PFN1 protein expression.


SIRT3-KLF15 signaling ameliorates kidney injury induced by hypertension.

  • Na Li‎ et al.
  • Oncotarget‎
  • 2017‎

Renal fibrosis participates in the progression of hypertension-induced kidney injury. The effect of SIRT3, a member of the NAD+-dependent deacetylase family, in hypertensive nephropathy remains unclear. In this study, we found that SIRT3 was reduced after angiotensin II (AngII) treatment both in vivo and in vitro. Furthermore, SIRT3-knockout mice aggravated hypertension-induced renal dysfunction and renal fibrosis via chronic AngII infusion (2000 ng/kg per minute for 42 days). On the contrary, SIRT3-overexpression mice attenuated AngII-induced kidney injury compared with wild-type mice. Remarkably, a co-localization of SIRT3 and KLF15, a kidney-enriched nuclear transcription factor, led to SIRT3 directly deacetylating KLF15, followed by decreased expression of fibronectin and collagen type IV in cultured MPC-5 podocytes. In addition, honokiol (HKL), a major bioactive compound isolated from Magnolia officinalis (Houpo), suppressed AngII-induced renal fibrosis through activating SIRT3-KLF15 signaling. Taken together, our findings implicate that a novel SIRT3-KLF15 signaling may prevent kidney injury from hypertension and HKL can act as a SIRT3-KLF15 signaling activator to protect against hypertensive nephropathy.


Subconjunctival injection of antagomir-21 alleviates corneal neovascularization in a mouse model of alkali-burned cornea.

  • Yun Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Corneal neovascularization may result in loss of corneal transparency and blindness. However, developing successful and inexpensive medical treatments for corneal neovascularization remains an unresolved issue. Recently, several studies have implicated miRNA functions in the regulation of cornea homeostasis. This study aimed to identify the miRNA expression profile in the neovascularized cornea after an alkali burn and to investigate the related underlying mechanisms. Here, alkali-burned corneas and matched normal tissues were pooled to perform miRNA sequencing. MiR-21 in alkali-burned cornea showed the greatest increment of abundance at 4 and 7 d after injury compared to the healthy cornea. The miR-21 expression was positively correlated with both the mRNA and protein level of key angiogenic factors including vascular endothelial growth factor (VEGF)-A and hypoxia-inducible factor-1α (HIF-1α). At 2 and 8 d after alkali burn, the mice received subconjunctival injections of antagomir-21 (1 or 5 nmol per injection). The injection of antagomir-21 (5 nmol) inactivated miR-21 and attenuated neovascularization progression by inhibiting the expression of VEGF-A and HIF-1α. Western blot analysis of the corneas demonstrated that antagomir-21 restored Sprouty 2/4 expression and silenced p-ERK activation. Therefore, these data reveal that antagomir-21 ameliorates the progression of corneal neovascularization likely via Sprouty 2/4-mediated inactivation of p-ERK. Delivery of antagomir-21 might be a potential therapeutic approach to prevent or treat visual loss caused by corneal neovascularization.


Noninvasive ventilation improves cardiac function in patients with chronic heart failure.

  • Jing Cheng‎ et al.
  • Oncotarget‎
  • 2016‎

Chronic heart failure (CHF) has been shown to be associated with an increased incidence of sleep-disordered breathing. Whether treatment with noninvasivepositive-pressure ventilation (NPPV), including continuous positive airway pressure, bi-level positive airway pressure and adaptive servo-ventilation, improves clinical outcomes of CHF patients is still debated. 2,832 CHF patients were enrolled in our analysis. NPPV was significantly associated with improvement in left ventricular ejection fraction (39.39% vs. 34.24%; WMD, 5.06; 95% CI, 3.30-6.81; P < 0.00001) and plasma brain natriuretic peptide level (268.23 pg/ml vs. 455.55 pg/ml; WMD, -105.66; 95% CI, [-169.19]-[-42.13]; P = 0.001). However, NPPV did not reduce all-cause mortality (0.26% vs. 0.24%; OR, 1.13; 95% CI, 0.93-1.37; P = 0.22) or re-hospitalization rate (57.86% vs. 59.38%; OR, 0.47; 95% CI, 0.19-1.19; P = 0.02) as compared with conventional therapy. Despite no benefits on hard endpoints, NPPV may improve cardiac function of CHF patients. These data highlight the important role of NPPV in the therapy of CHF.


Meta-analysis of differences in Constant-Murley scores for three mid-shaft clavicular fracture treatments.

  • Wei Jiang‎ et al.
  • Oncotarget‎
  • 2017‎

There is no consensus on the optimal treatment for mid-shaft clavicular fracture. We conducted a meta-analysis to compare the effectiveness of non-operative treatment, plate fixation, and intramedullary pin fixation in terms of the Constant-Murley Score (CMS) for treatment of mid-shaft clavicular fracture. Comprehensive search of the Embase, Cochrane Library and PubMed was conducted to retrieve relevant randomized controlled trials (RCTs). A random-effect network meta-analysis was conducted within a Bayesian framework using Markov Chain Monte Carlo (MCMC) in OpenBUGS 3.2.2. Differences in CMS among the three treatments analyzed were evaluated with weighted mean difference (WMD) and surface under the cumulative ranking curves (SUCRA). Eleven studies met our inclusion criteria and were included in our network meta-analysis. Our results revealed that in terms of CMS followed-up for six months, the efficacies of plate fixation and intramedullary pin fixation were higher than non-operative treatment (plate fixation: WMD = 4.70, 95% CI = 1.21 ∼ 7.83; intramedullary pin fixation: WMD = 6.71, 95% CI = 3.20 ∼ 10.39), and intramedullary pin fixation had better efficacy than plate fixation, had better efficacy. However, no differences were found between the efficacies of the three treatments in pairwise comparisons with respect to CMS followed-up for six weeks, three months, 12 months and 24 months. In addition, the cluster analysis showed that intramedullary pin fixation had the best efficacy for patients with mid-shaft CF, followed by plate fixation and non-operative treatment. These analyses suggest intramedullary pin fixation may be the optimal therapeutic approach for mid-shaft clavicular fracture patients.


MiR-29b/TET1/ZEB2 signaling axis regulates metastatic properties and epithelial-mesenchymal transition in breast cancer cells.

  • Hua Wang‎ et al.
  • Oncotarget‎
  • 2017‎

MiR-29b has been reported to be both a suppressor and a promoter in breast cancer (BC) cells proliferation and metastasis. Significant efforts have been made to explain the seemingly contradictory effects of miR-29b on BC, but no answer has yet been clearly verified. In this study, we overexpressed and knocked down miR-29b in BC cell lines, modulated expression of its downstream target gene TET1 and downregulated a downstream target gene of TET1, ZEB2, to explore the regulatory mechanism of miR-29b in BC cell proliferation, migration and epithelial-mesenchymal transition (EMT). Our results showed lower expression of miR-29b in BC samples and cell lines. Functional assays showed that miR-29b overexpression resulted in a higher cell proliferation, greater colony formation, higher migration rate and EMT. A dual luciferase assay identified TET1 as a direct target of miR-29b. As the promoting effects of miR-29b in the proliferation and metastasis of MDA-MB-231 and MCF-7, knockdown of TET1 also led to increased proliferation, colony formation, invasion and EMT. Further, we found that TET1 bound to the promoter of ZEB2, and siTET1 enhanced ZEB2 expression. Disruption of ZEB2 expression inhibited BC cells proliferation, colony formation and invasion. Our results establish the miR-29b/TET1/ZEB2 pathway in BC cell proliferation, migration and provide a theoretical basis for further research on the molecular mechanisms and new clinical treatments for BC.


Deletion of resistin-like molecule-beta attenuates angiotensin II-induced abdominal aortic aneurysm.

  • Xiao Meng‎ et al.
  • Oncotarget‎
  • 2017‎

In the present study, we want to test whether deletion of resistin-like molecule-beta (RELMβ) attenuates angiotensin II (Ang II)-induced formation of abdominal aortic aneurysm (AAA). RELMβ gene expression was inhibited by siRNA both in vivo and in vitro. Apolipoprotein E-knockout (ApoE-/-) mice were randomly divided into saline, Ang II, siRNA negative control (si-NC) and siRNA RELMβ (si-RELMβ) groups (n=15 each), and mice in the last three groups underwent Ang II infusion for 4 weeks to induce AAA. RELMβ gene deficiency significantly decreased AAA incidence and severity, which was associated with reduced macrophage accumulation and decreased expression of proinflammatory cytokines (monocyte chemoattractant protein 1 and interleukin 6), matrix metalloproteinase 2 (MMP-2) and MMP-9 in the aortic wall. In cultured macrophages, RELMβ deficiency blunted the response of macrophages to Ang II and downregulated the levels of proinflammatory cytokines, MMP-2 and MMP-9. Recombinant RELMβ promoted the secretion of proinflammatory cytokines, MMP-2 and MMP-9 in macrophages and activated extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) signaling, which was reversed with pretreatment with inhibitors of ERK1/2 and JNK. Deletion of RELMβ attenuated Ang II-induced AAA formation in ApoE-/- mice. The inherent mechanism may involve the reduced expression of proinflammatory cytokines, MMP-2 and MMP-9, which was mediated by ERK1/2 and JNK activation. Therefore, inhibiting RELMβ secretion may be a novel approach for anti-aneurysm treatment.


The role of adrenomedullin in the pathogenesis of gastric cancer.

  • Fuhao Qiao‎ et al.
  • Oncotarget‎
  • 2017‎

Adrenomedullin has been shown to be overexpressed in many tumors, including gastric cancer tumors; however, its mechanism of action remains unclear. In this study, we examined the role of adrenomedullin in the pathogenesis of gastric cancer. Using clinical specimens and immunohistochemistry, we found that the expression levels of adrenomedullin and its receptors are inordinately elevated as compared to the adjacent non-tumor gastric tissues. We used siRNA gene silencing, in BGC-823 gastric cancer cell lines, to target adrenomedullin genes, and found that increased adrenomedullin expression results in the proliferation of tumor cells, tumor invasion, and metastasis. Furthermore, we found that under hypoxic conditions, gastric cancer BGC-823 cells exhibit higher expression levels of adrenomedullin and various other related proteins. Our results indicate the involvement of adrenomedullin in microvessel proliferation and partially in the release of hypoxia in solid tumors. Knockdown of adrenomedullin expression, at the protein level, reduced the levels of phosphoprotein kinase B and B-cell lymphoma 2 but increased the levels of cleaved-caspase3 and Bcl 2 associated x protein (Bax). Therefore, we hypothesized siRNA targeting of adrenomedullin genes inhibits various serine/threonine kinases via a signaling pathway that induces cell apoptosis. SiRNA targeting of adrenomedullin genes and green fluorescent control vectors were used to transfect BGC-823 cells, and western blot analyses were used to detect changes in the rates of autophagy in related proteins using confocal laser scanning microscopy. No significant changes were detected. Therefore, the knockdown of adrenomedullin and its receptors may represent a novel treatment strategy for gastric cancer.


Which type of congenital malformations is significantly increased in singleton pregnancies following after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis.

  • Ying Liang‎ et al.
  • Oncotarget‎
  • 2018‎

It is inconclusive nowadays for which type of congenital malformations(CMs) is increased in singleton pregnancies following after in vitro fertilization(IVF)/intracytoplasmic sperm injection(ICSI) compared with those after spontaneous conception; furthermore, a complete overview is missing. We conducted a meta-analysis of cohort studies to assess the risk of specific CMs associated with IVF/ICSI singleton pregnancies. Unrestricted searches were conducted, with an end date parameter of 1 June 2017, of PubMed, Embase, Google Scholar, Cochrane Libraries, and Chinese databases. Either a fixed- or a random-effects model was used to calculate the overall combined risk estimates. Subgroup and sensitivity analyses were performed to explore potential heterogeneity moderators when significant heterogeneity was observed. Sixteen cohort studies with a total of 129,648 IVF/ICSI and 5,491,949 spontaneously conceived singleton births fulfilled the inclusion criteria. The IVF/ICSI singleton pregnancies had a significantly increased risk of cleft lip and/or palate (OR = 1.34 [95% CI: 1.07-1.69]; I2 = 0%), eye, ear, face and neck (odd ratios [OR] = 1.20 [95% CI: 1.04-1.39]; I2 = 15%), chromosomal (OR = 1.23 [95% CI: 1.07-1.40]; I2 = 32%), respiratory (OR = 1.28 [95% CI: 1.01-1.64]; I2 = 37%), digestive (OR = 1.46 [95% CI: 1.29-1.65]; I2 = 0%), musculoskeletal (OR = 1.47 [95% CI: 1.25-1.72]; I2 = 64%), urogenital (OR = 1.43 [95% CI: 1.18-1.72]; I2 = 62%), and circulatory (OR = 1.39 [95% CI: 1.23-1.58]; I2 = 46%) system malformations. Relevant heterogeneity moderators have been identified by subgroup analysis. Sensitivity analysis yielded consistent results. No evidence of publication bias was observed. In conclusion, the IVF/ICSI singleton pregnancies are associated with higher risks for most specific CMs. Clinicians should provide appropriate information to counseling IVF/ICSI patients.


Neferine inhibits proliferation and collagen synthesis induced by high glucose in cardiac fibroblasts and reduces cardiac fibrosis in diabetic mice.

  • Xue Liu‎ et al.
  • Oncotarget‎
  • 2016‎

Cardiac fibrosis is a common pathological process accompanying diabetes mellitus. In this report, we studied the effects of neferine (a major bisbenzylisoquinline alkaloid derived from lotus embryos) on cardiac fibrosis induced by diabetes mellitus, as well as the underlying molecular pathways. In vivo, type 1 diabetes mellitus was induced in mice by administering streptozotocin. Diabetic mice were treated with neferine through oral gavage, and cardiac function was assessed using echocardiography. Total collagen deposition was assessed by Masson's trichrome and Picrosirius staining. In vitro, cardiac fibroblasts were cultured in normal or high-glucose medium with or without neferine. Neferine attenuated left ventricular dysfunction and remodeling and reduced collagen deposition in diabetic mice. In vitro, neferine inhibited cardiac fibroblast proliferation, migration, and differentiation into myofibroblasts. In addition, neferine reduced high-glucose-induced collagen production and inhibited TGF-β1-Smad, ERK and p38 MAPK signaling activation in cardiac fibroblasts. These results suggest that neferine may have antifibrogenic effects in diabetes-related cardiac fibrosis.


Oblongifolin M, an active compound isolated from a Chinese medical herb Garcinia oblongifolia, potently inhibits enterovirus 71 reproduction through downregulation of ERp57.

  • Mengjie Wang‎ et al.
  • Oncotarget‎
  • 2016‎

There is no effective drug to treat EV71 infection yet. Traditional Chinese herbs are great resources for novel antiviral compounds. Here we showed that Oblongifolin M (OM), an active compound isolated from Garcinia oblongifolia, potently inhibited EV71 infection in a dose dependent manner. To identify its potential effectors in the host cells, we successfully identified 18 proteins from 52 differentially expressed spots by comparative proteomics studies. Further studies showed that knockdown of ERp57 inhibited viral replication through downregulating viral IRES (internal ribosome entry site) activities, whereas ectopic expression of ERp57 increased IRES activity and partly rescued the inhibitory effects of OM on viral replication. We demonstrated that OM is an effective antiviral agent; and that ERp57 is one of its cellular effectors against EV71 infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: