Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

Myricetin Attenuated Diabetes-Associated Kidney Injuries and Dysfunction via Regulating Nuclear Factor (Erythroid Derived 2)-Like 2 and Nuclear Factor-κB Signaling.

  • Zi-Jun Yang‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Background/Aims: Previous studies have suggested that myricetin (Myr) could promote the expression and nuclear translocation of nuclear factor (erythroid-derived 2)-like (Nrf2). This study aimed to investigate whether Myr could attenuate diabetes-associated kidney injuries and dysfunction in wild-type (WT) and Nrf2 knockdown (Nrf2-KD) mice. Methods: Lentivirus-mediated Nrf2-KD and WT mice were used to establish type 1 diabetes mellitus (DM) by streptozotocin (STZ) injection. WT and Nrf2-KD mice were then randomly allocated into four groups: control (CON), Myr, STZ, and STZ + Myr. Myr (100 mg/kg/day) or vehicle was administered for 6 months. Kidneys were harvested and weighed at the end of the experiment. Hematoxylin and eosin staining and Masson's trichrome staining were used to assess the morphology and fibrosis of the kidneys, respectively. Urinary albumin-to-creatinine ratio was used to test renal function. Western blotting was performed to determine oxidative-stress- or inflammation-associated signaling pathways. Real-time polymerase chain reaction (RT-PCR) was performed to detect the expression of fibrosis or inflammatory cytokines at the message Ribonucleic Acid (mRNA) level. Results: In WT mice, Myr alleviated DM-induced renal dysfunction, fibrosis, and oxidative damage and enhanced the expression of Nrf2 and its downstream genes. After knockdown of Nrf2, Myr treatment partially but significantly mitigated DM-induced renal dysfunction and fibrosis, which might be associated with inhibition of the I-kappa-B (IκB)/nuclear factor-κB (NF-κB) (P65) signaling pathway. Conclusions: This study showed that Myr prevented DM-associated decreased expression of Nrf2 and inhibited IκB/NF-κB (P65) signaling pathway. Moreover, inhibition of IκB/NF-κB (P65) signaling pathway is independent of the regulation of Nrf2. Thus, Myr could be a potential treatment for preventing the development and progression of DM-associated kidney injuries and dysfunction.


The Impacts of Herbal Medicines and Natural Products on Regulating the Hepatic Lipid Metabolism.

  • Sha Li‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

The dysregulation of hepatic lipid metabolism is one of the hallmarks in many liver diseases including alcoholic liver diseases (ALD) and non-alcoholic fatty liver diseases (NAFLD). Hepatic inflammation, lipoperoxidative stress as well as the imbalance between lipid availability and lipid disposal, are direct causes of liver steatosis. The application of herbal medicines with anti-oxidative stress and lipid-balancing properties has been extensively attempted as pharmaceutical intervention for liver disorders in experimental and clinical studies. Although the molecular mechanisms underlying their hepatoprotective effects warrant further exploration, increasing evidence demonstrated that many herbal medicines are involved in regulating lipid accumulation processes including hepatic lipolytic and lipogenic pathways, such as mitochondrial and peroxisomal β-oxidation, the secretion of very low density lipoprotein (VLDL), the non-esterified fatty acid (NEFA) uptake, and some vital hepatic lipogenic enzymes. Therefore, in this review, the pathways or crucial mediators participated in the dysregulation of hepatic lipid metabolism are systematically summarized, followed by the current evidences and advances in the positive impacts of herbal medicines and natural products on the lipid metabolism pathways are detailed. Furthermore, several herbal formulas, herbs or herbal derivatives, such as Erchen Dection, Danshen, resveratrol, and berberine, which have been extensively studied for their promising potential in mediating lipid metabolism, are particularly highlighted in this review.


Curcumin Derivative Cur20 Attenuated Cerebral Ischemic Injury by Antioxidant Effect and HIF-1α/VEGF/TFEB-Activated Angiogenesis.

  • Runfang Zhang‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

In this paper, a curcumin derivative Cur20 was synthesized for better hydrolytic stability, which showed a higher angiogenic effect on zebrafish model than curcumin. In order to reveal the potential effects on neuroprotection, a mouse model of vascular dementia (VaD) induced by permanent right common carotid artery occlusion (rUCCAO) was established. After two weeks of curcumin administration, the cognitive function of mice was detected by Morris water maze and Y maze. The alteration on oxidative injuries and morphological damage were also analyzed by reactive oxygen species, superoxide dismutase, GSH, malondialdehyde tests, and Nissl stain on cortex/hippocampus. The angiogenesis and related signal factors were evaluated as well. The results showed that Cur20 significantly attenuated the cognitive dysfunction and histopathological changes of the VaD mice with enhanced antioxidant system and angiogenesis. In addition, primary rat brain microvessel endothelial cells (rBMECs) with oxygen glucose deprivation (OGD) were applied to further verify the possible mechanisms of Cur20-induced angiogenesis. The results demonstrated that the proliferation effect and the activation of pro-angiogenesis factors such as HIF-1α, VEGF, and TFEB might contribute to the protection of ischemic injury. Based on the above, our conclusion is that Cur20 can be considered as a promising therapeutic strategy for VaD.


Network Pharmacology-Based Analysis and Experimental Exploration of Antidiabetic Mechanisms of Gegen Qinlian Decoction.

  • Yu Xu‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Type-2 diabetes mellitus (T2DM) and therapy options have been studied increasingly due to their rising incidence and prevalence. The trend of applying traditional Chinese medicine (TCM) to treat T2DM is increasing as a crucial medical care for metabolic dysfunctions. Gegen Qinlian decoction (GQL), a well-known classical TCM formula used in China, has been clinically applied to treat various types of chronic metabolic diseases. However, antidiabetic effects of GQL administration during T2DM have never been studied systematically. We assessed physiological and molecular targets associated with therapeutic effects of GQL by evaluating network topological characteristics. The GQL-related biological pathways are closely associated with antidiabetic effects, including the TNF and PI3K-AKT signaling pathways. Associated primary biological processes such as RNA polymerase II promoter transcription participate in the inflammatory response, oxidative stress reduction, and glucose metabolic process, thereby exerting multiple biological effects on the antidiabetic mechanism. Furthermore, our results showed that GQL can affect blood glycemic levels and ameliorate inflammatory symptoms, and liver and pancreas tissue injury in high-fat diet plus streptozotocin-induced diabetic mice. In vivo and in vitro experiments confirmed that antidiabetic effects of GQL were associated with a modulation of the TNF and PI3K-AKT-MTOR pathways.


PTEN Methylation Promotes Inflammation and Activation of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis.

  • Xiao-Feng Li‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Rheumatoid arthritis (RA) is characterized by a tumor-like expansion of the synovium and subsequent destruction of adjacent articular cartilage and bone. In our previous work we showed that phosphatase and tension homolog deleted on chromosome 10 (PTEN) contributes to the activation of fibroblast-like synoviocytes (FLS) in adjuvant-induced arthritis (AIA), but the underlying mechanism is not unknown. In this study, we show that PTEN is downregulated while DNA methyltransferase (DNMT)1 is upregulated in FLS from RA patients and a rat model of AIA. DNA methylation of PTEN was increased by administration of tumor necrosis factor (TNF)-α in FLS of RA patients, as determined by chromatin immunoprecipitation and methylation-specific PCR. Treatment with the methylation inhibitor 5-azacytidine suppressed cytokine and chemokine release and FLS activation in vitro and alleviated paw swelling in vivo. PTEN overexpression reduced inflammation and activation of FLS via protein kinase B (AKT) signaling in RA, and intra-articular injection of PTEN-expressing adenovirus into the knee of AIA rats markedly reduced inflammation and paw swelling. Thus, PTEN methylation promotes the inflammation and activation of FLS in the pathogenesis of RA. These findings provide insight into the molecular basis of articular cartilage destruction in RA, and indicate that therapeutic strategies that prevent PTEN methylation may an effective treatment.


CD226 Is Required to Maintain Megakaryocytes/Platelets Homeostasis in the Treatment of Knee Osteoarthritis With Platelet-Rich Plasma in Mice.

  • Yongming Liu‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Platelet-rich plasma (PRP) is a platelet-based application used to treat osteoarthritis (OA) clinically. The co-stimulatory molecule CD226 is expressed in T cells, NK cells, and also platelets. However, exact effects of CD226 on platelets and whether its expression level influences PRP efficacy are largely unknown. Here, CD226fl/flPF4-Cre mice were obtained from mating CD226 fl/fl mice with PF4-Cre mice. Blood samples and washed platelets were collected from the mice eyeballs to undergo routine blood tests and transmission electron microscopy. Differentially expressed proteins were detected by iTRAQ-based proteomics analysis. Animal OA models were established through surgical destabilization of the medial meniscus (DMM) for C57BL/6 wildtype mice, followed by PRP injection to evaluate the effects of platelet CD226 on PRP efficacy. The results showed that deletion of platelet CD226 increased the number of megakaryocytes (MKs) in bone marrow (BM) but reduced MKs in spleen, combined with significantly decreased platelet amounts, α-granule secretion, and reduced immature platelets; indicating that absence of platelet CD226 may disrupt MK/platelet homeostasis and arrested platelet release from MKs. Sequencing analysis showed abnormal ribosomal functions and much downregulated proteins in the absence of platelet CD226. Autophagy-related proteins were also reduced in the CD226-absent MKs/platelets. Moreover, deletion of platelet CD226 diminished the protective effects of PRP on DMM-induced cartilage lesions in mice, and PDGF restored it. Therefore, deficiency of platelet CD226 inhibited platelet maturation, secretion, and normal ribosomal functions, which may lead to depressed PRP efficacy on OA, suggesting that CD226 is required to regulate platelet growth, functions, and its application.


Dihydroartemisinin Inhibits Laser-Induced Choroidal Neovascularization in a Mouse Model of Neovascular AMD.

  • Xun Li‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Purpose: Choroidal neovascularization (CNV) is the main pathogenic process and a leading cause of severe vision loss in neovascular age-related macular degeneration (AMD). We investigated the antiangiogenic efficacy of dihydroartemisinin (DHA) in an experimental laser-induced CNV mouse model. Methods: After fluorescein angiography confirmed that CNV was induced by laser photocoagulation in C57BL/6J mice, DHA or vehicle was given by intragastric administration once a day. On day 6 and day 12, fluorescein angiography, optic coherence tomography, and flat-mounting analysis were performed to grade CNV leakage, measure CNV thickness and evaluate CNV areas, respectively. Immunofluorescence staining and Western blot analysis were performed to evaluate the expression of NF-κB, VEGF, and VEGFR2. To confirm the safety of intragastric DHA application, changes in retinal morphology and neural cell apoptosis were tested by histopathological examination and TUNEL assay, and retinal function was determined by electroretinogram (ERG). Results: Intragastric administration of DHA significantly suppressed CNV leakage and CNV formation in both thickness and area. Immunofluorescence showed that DHA suppressed VEGFR2 and NF-κB p65 expression in laser-induced lesions. Compared to the normal group, the protein expression of VEGF, VGFER2, NF-κB p65, and NF-κB1 p50 increased significantly in the vehicle group after laser photocoagulation, while it was profoundly inhibited by DHA treatment. In addition, histopathological examination, TUNEL analysis, and ERG test showed no obvious evidence of retinal toxicity caused by DHA. Conclusion: Systemic administration of DHA can effectively inhibit laser-induced CNV formation in mice, which might be due to the suppression of the classic NF-κB signaling pathway and downregulation of VEGFR2 and VEGF expression. The current results suggest that DHA could be a natural potential alternative therapeutic strategy for neovascular AMD.


Chinese Classical Music Lowers Blood Pressure and Improves Left Ventricular Hypertrophy in Spontaneously Hypertensive Rats.

  • Jingyuan Li‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

High blood pressure (BP) plays an important role in the pathogenesis and development of cardiovascular diseases and multi-organ damages. Music has been well known to elicit emotional changes, such as anxiolytic effects. However, whether music therapy lowers BP in spontaneously hypertensive rats (SHR) and the potential mechanism remains unknown. SHRs were, respectively exposed to white noise (WN), Western classical music (WM), Chinese classical music (CCM), rock music (RM), and bisoprolol treatment. WN and WM did not lower systemic BP, but CCM and RM significantly lowered BPs in SHRs. The effects of CCM therapy on lowering systemic BPs is comparable to that of bisoprolol at the dose of low to medium. Combination of CCM treatment with bisoprolol further improved systemic BPs and myocardial hypertrophy in SHRs, compared to CCM treatment or bisoprolol alone. Furthermore, IHC and WB analysis indicated that CCM therapy inhibited the β1/cAMP/PKA and α1/PLC/PKC signalings, but didn't alter the β2/PI3K/Akt signaling. Above all, CCM therapy lowers systemic BPs and alleviates myocardial hypertrophy in hypertensive rats, which may be caused by the inhibitions of β1/cAMP/PKA and α1/PLC/PKC signalings.


PTPN2 targets TAK1 for dephosphorylation to improve cellular senescence and promote adipose tissue browning in T2DM.

  • Yapeng Liu‎ et al.
  • Frontiers in pharmacology‎
  • 2023‎

Introduction: The energy imbalance when energy intake exceeds expenditure acts as an essential factor in the development of insulin resistance (IR). The activity of brown adipose tissue, which is involved in the dissipation of energy via heat expenditure decreases under type 2 diabetic mellitus (T2DM) state when the number of pathological aging adipocytes increases. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) regulates several biological processes by dephosphorylating several cellular substrates; however, whether PTPN2 regulates cellular senescence in adipocytes and the underlying mechanism has not been reported. Methods: We constructed a model of type 2 diabetic mice with PTPN2 overexpression to explore the role of PTPN2 in T2DM. Results: We revealed that PTPN2 facilitated adipose tissue browning by alleviating pathological senescence, thus improving glucose tolerance and IR in T2DM. Mechanistically, we are the first to report that PTPN2 could bind with transforming growth factor-activated kinase 1 (TAK1) directly for dephosphorylation to inhibit the downstream MAPK/NF-κB pathway in adipocytes and regulate cellular senescence and the browning process subsequently. Discussion: Our study revealed a critical mechanism of adipocytes browning progression and provided a potential target for the treatment of related diseases.


Xiaoaiping Induces Developmental Toxicity in Zebrafish Embryos Through Activation of ER Stress, Apoptosis and the Wnt Pathway.

  • Juanjuan Li‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

The aim of the study was to determine the developmental toxicity of the traditional Chinese medicine Xiaoaiping (XAP) and to investigate its underlying mechanism of action. Zebrafish embryos were incubated with 0.4, 0.8, 1.2, and 1.6 mg/mL XAP. Endpoints such as mortality, hatching rate, malformation, body length, morphology score, swimming behavior, histological changes, reactive oxygen species (ROS) production, total superoxide dismutase (T-SOD) activity, and the mRNA expression of genes related to oxidative stress, endoplasmic reticulum (ER) stress, apoptosis, and the Wnt pathway were evaluated. Our results demonstrated that XAP exposure increased mortality and malformation and reduced the hatching rate. XAP resulted in severe malformation, including swim bladder deficiency, yolk retention, pericardial edema, and tail curvature. Histopathological analysis showed that XAP induced liver, heart and muscle injury. High doses (≥1.2 mg/mL) of XAP notably decreased the locomotor capacity of zebrafish. ROS generation was remarkably increased and T-SOD activity was decreased, confirming that oxidative stress was induced by XAP. The mRNA expression levels of ER stress-related genes (chop, hspa5, hsp90b1, and perk), apoptosis-related genes (caspase-3, bax, and p53) and wnt11 were significantly upregulated by XAP exposure. The expression levels of the oxidative stress-related genes (cat, sod1, and gstp2), Wnt pathway-related genes (β-catenin, wnt3a, and wnt8a) and bcl-2 initially increased and then decreased as the XAP exposure dose increased. In conclusion, we provide evidence for the first time that XAP can induce dose-related developmental toxicity, and ER stress, apoptosis and the Wnt pathway participate in the toxicity regulation.


Therapeutic Effect of Ilex hainanensis Merr. Extract on Essential Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

  • Xiaochen Yang‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

With a rapidly aging population, the prevalence of hypertension in adults continues to rise, placing a substantial and escalating social and economic burden. Ilex hainanensis Merr. is commonly used as a folk remedy for treating hypertension, dyslipidemia, and inflammation in China. This systematic review aims to evaluate current evidence for the therapeutic effect of Ilex hainanensis Merr. extract (EIH) on essential hypertension. Six electronic databases (Pubmed, MEDLINE, The Cochrane Central Register of Controlled Trials, Chinese Scientific Journals Database, Wanfang and CNKI) were searched to identify eligible randomized controlled trials (RCTs) relevant to EIH on essential hypertension up to Jan 2018. Six RCTs including 772 participants met eligibility criteria. Methodological quality of the trials was generally low. Meta-analysis showed that EIH demonstrated a beneficial effect for lowering systolic and diastolic blood pressure (SBP/DBP), left ventricular mass (LVM) in participants with essential hypertension. There was no significant difference between EIH and antihypertensive drugs in SBP (WMD: -0.44 [-2.30, 1.43]; P = 0.65), DBP (WMD: WMD: -0.02 [-1.13, 1.09]; P = 0.98) and LVM (WMD: -1.36 [-4.99, 2.26]; P = 0.46). Moreover, one trial showed that EIH combined with antihypertensive drugs was more effective in lowering blood pressure than those antihypertensive drugs used alone. However, the findings were limited by the small sample sizes, duration and low methodological quality of the trials. This is the first systematic review of EIH on essential hypertension. More rigorous RCTs with high quality are still needed to prove the effectiveness and safety of EIH and its preparations for essential hypertension.


Stimulatory G-Protein α Subunit Modulates Endothelial Cell Permeability Through Regulation of Plasmalemma Vesicle-Associated Protein.

  • Lifan He‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Endothelial cell leakage occurs in several diseases. Intracellular junctions and transcellular fashion are involved. The definite regulatory mechanism is complicated and not fully elucidated. The alpha subunit of the heterotrimeric G-stimulatory protein (Gsα) mediates receptor-stimulated production of cyclic adenosine monophosphate (cAMP). However, the role of Gsα in the endothelial barrier remains unclear. In this study, mice with knockout of endothelial-specific Gsα (GsαECKO) were generated by crossbreeding Gsαflox/flox mice with Cdh5-CreERT2 transgenic mice, induced in adult mice by tamoxifen treatment. GsαECKO mice displayed phenotypes of edema, anemia, hypoproteinemia and hyperlipoproteinemia, which indicates impaired microvascular permeability. Mechanistically, Gsα deficiency reduces the level of endothelial plasmalemma vesicle-associated protein (PLVAP). In addition, overexpression of Gsα increased phosphorylation of cAMP response element-binding protein (CREB) as well as the mRNA and protein levels of PLVAP. CREB could bind to the CRE site of PLVAP promoter and regulate its expression. Thus, Gsα might regulate endothelial permeability via cAMP/CREB-mediated PLVAP expression.


Involvement of Nrf2-HO-1/JNK-Erk Signaling Pathways in Aconitine-Induced Developmental Toxicity, Oxidative Stress, and ROS-Mitochondrial Apoptosis in Zebrafish Embryos.

  • Qing Xia‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Aconitine (AC), one of the bioactive diterpenoid alkaloids extracted from Aconitum plants, is widely used in traditional herbal medicine to treat various diseases. Emerging evidence indicates that AC has attracted great interest for its wide cardiotoxicity and neurotoxicity. However, the toxic effects of AC on embryonic development and its underlying mechanisms remain unclear. Here, a developmental toxicity assay of AC was performed on zebrafish embryos from 4 to 96 h post fertilization (hpf), and its underlying mechanisms were discussed. AC exposure impaired the cardiac, liver, and neurodevelopment. Especially, a high dose of AC (7.27 and 8.23 μM) exposure resulted in malformations at 72 and 96 hpf, including reduced body length, curved body shape, pericardial edema, yolk retention, swim bladder and brain developmental deficiency, and degeneration of dopaminergic neurons. High-concentration AC exposure caused a deficient cardiovascular system with cardiac dysfunctions, increased heart rates at 72 and 96 hpf, and reduced locomotor behavior at 120 hpf. AC treatment significantly increased the ROS level and triggered cell apoptosis in the heart and brain regions of embryos at 96 hpf in 7.27 and 8.23 μM AC treatment zebrafish. Oxidative stress was confirmed by reduced levels of T-SOD activity associated with accumulation of lipid peroxidation in larvae. The expression levels of oxidative stress-related genes (Nrf2, HO-1, Cat, and Sod-1) Erk1/2 and Bcl-2 were significantly downregulated at 96 hpf. The expression pattern of JNK and mitochondrial apoptosis-related genes (Bad, Bax, Cyto C, Casp-9, and Casp-3) was significantly upregulated. Taken together, all these parameters collectively provide the first evidence of AC-induced developmental toxicity in zebrafish embryo/larvae through ROS-medicated mitochondrial apoptosis involving Nrf2/HO-1 and JNK/Erk pathways.


From AVATAR Mice to Patients: RC48-ADC Exerted Promising Efficacy in Advanced Gastric Cancer With HER2 Expression.

  • Zuhua Chen‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

RC48-ADC is a novel humanized antibody specific for human epidermal growth factor receptor 2 (HER2)in conjugation with a microtubule inhibitor via a cleavable linker. This study was to evaluate the antitumor activity and mechanism of RC48-ADC in gastric cancer (GC) and explore the population that may benefit from RC48-ADC treatment. Four human GC cell lines and nine patient-derived xenograft (PDX) models were exploited to evaluate the antitumor effect of RC48-ADC or trastuzumab treatment in vitro and in vivo. The expression and phosphorylation of HER2 were assessed by immunohistochemistry (IHC) staining. Critical molecules of downstream PI3K/AKT and cell cycle and apoptosis signaling pathways were detected and quantified by immunoblotting. Combined with preliminary results of preclinical research, three patients with IHC3+, IHC2+/FISH+, and IHC2+/FISH- of HER2 were enrolled to verify the efficacy of RC48-ADC treatment in advanced GC. In vitro, RC48-ADC had superior antiproliferative effects in a dose-dependent manner on GC cells, especially on HER2-positive cells. In vivo, RC48-ADC exceeded trastuzumab in GC PDX models with HER2 expression, even in models with moderate to low expression of HER2. Further exploration of mechanism showed that RC48-ADC exerted the antitumor effect by inhibiting phosphorylation of HER2, inducing G2/M phase arrest and cell apoptosis in HER2-expressed PDX models. In clinical practice, RC48-ADC had satisfactory efficacy in HER2-positive and HER2 moderately expressed GC patients and demonstrated promising efficacy in HER2-positive patients who have progressed after anti-HER2 therapy. In conclusion, RC48-ADC exerted promising antitumor activity in HER2-positive as well as score of 2+ in IHC and ISH-negative AGC patients after progression of systematic treatment.


Histamine H3 Receptor Antagonist Enhances Neurogenesis and Improves Chronic Cerebral Hypoperfusion-Induced Cognitive Impairments.

  • Na Wang‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Chronic cerebral hypoperfusion (CCH) is a neurodegenerative disease, which induces cognitive impairments in the central nervous system (CNS). Histamine H3 receptor (H3R) is an autoreceptor involved in the modulation of neurogenesis and synaptic plasticity in the CNS. However, the role of H3R in CCH-induced injury and the related mechanisms remain to be clarified. Here, we found that thioperamide (THIO), a H3R antagonist, promotes the proliferation of NE-4C stem cells under either normal or oxygen-glucose deprivation (OGD) condition in vitro. Thioperamide promotes the phosphorylation of cAMP-response element binding (CREB), and thereby upregulates the expression and release of brain-derived neurotrophic factor (BDNF). However, H89, an inhibitor of protein kinase A (PKA)/CREB, reverses the effects of thioperamide on either BDNF expression and release or cell proliferation in NE-4C stem cells. Moreover, thioperamide has protective effects on OGD-induced impairment of cell viability and neuronal morphology in primary neurons in vitro. Furthermore, thioperamide enhanced neurogenesis in the dentate gyrus (DG) and subventricular zone (SVZ) regions in vivo, and ameliorated CCH-induced cognitive impairments. Taken together, these findings showed that thioperamide protects primary neurons against OGD-induced injury and promotes the proliferation of neural stem cells in DG and SVZ regions through CREB/BDNF pathways, thereby improving cognitive deficit.


Ketamine and Active Ketamine Metabolites Regulate STAT3 and the Type I Interferon Pathway in Human Microglia: Molecular Mechanisms Linked to the Antidepressant Effects of Ketamine.

  • Ming-Fen Ho‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Inflammation is an important biological process which contributes to risk for depression, in part as a result of the production of proinflammatory cytokines and of alterations in glutamatergic neurotransmission. Ketamine has anti-inflammatory properties which might contribute to its antidepressant effects. This study was designed to clarify mechanisms of action for ketamine and its active metabolites, (2R,6R;2S,6S)-hydroxynorketamine (HNK), which also appear to play a major role in ketamine's rapid antidepressant effects. An HMC3 human microglial cell line was used as a model system to test a possible role for ketamine in immune response regulation that might contribute to its antidepressant effects. Our results highlight the fact that ketamine and its two active metabolites can regulate the type I interferon pathway mediated, at least partially, through signal transducer and activation of transcription 3 (STAT3) which plays a major role in the immune response. Specifically, STAT3 downstream genes that were modulated by either ketamine or its active metabolites were enriched in the "response to type I interferon" pathway. Our data also suggest that STAT3 might play a role in ketamine's antidepressant effects, mediated, at least in part, through eukaryotic elongation factor 2 (EEF2), resulting in the augmentation of brain-derived neurotropic factor (BDNF) expression and promoting the synthesis of synaptic proteins postsynaptic density protein 95 (PSD95) and synapsin I (SYN1).


Edible and Herbal Plants for the Prevention and Management of COVID-19.

  • Sha Li‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Background: The outbreak of the pandemic coronavirus disease 2019 (COVID-19) has now become a global pandemic spreading throughout the world. Unfortunately, due to the high infectiousness of the novel β-coronavirus, it is very likely to become an ordinary epidemic. The development of dietary supplements and functional foods might provide a strategy for the prevention and management of COVID-19. Scope and Approach: A great diversity of potential edible and medicinal plants and/or natural compounds showed potential benefits in managing SARS, which may also combat COVID-19. Moreover, many plants and compounds have currently been proposed to be protective against COVID-19. This information is based on data-driven approaches and computational chemical biology techniques. In this study, we review promising candidates of edible and medicinal plants for the prevention and management of COVID-19. We primarily focus on analyzing their underlying mechanisms. We aim to identify dietary supplements and functional foods that assist in managing this epidemic. Key findings and Conclusion: We infer that acetoside, glyasperin, isorhamnetin, and several flavonoid compounds may prevent and/or be effective in managing COVID-19 by targeting the viral infection, reducing the host cytokine storm, regulating the immune response, and providing organ protection. These bioactive dietary components (used either alone or in combination) might assist in the development of dietary supplements or functional foods for managing COVID-19.


Baicalein Ameliorates Myocardial Ischemia Through Reduction of Oxidative Stress, Inflammation and Apoptosis via TLR4/MyD88/MAPKS/NF-κB Pathway and Regulation of Ca2+ Homeostasis by L-type Ca2+ Channels.

  • Jinghan Li‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Background: Baicalein (Bai) is the principal ingredient of Scutellaria baicalensis Georgi. Reports concerning the therapeutic advantages in treating cardiovascular diseases have been published. However, its protective mechanism towards myocardial ischemia (MI) is undefined. Objective: The aim of this study was to investigate the protective mechanisms of Bai on mouse and rat models of MI. Methods: Mice were pre-treated with Bai (30 and 60 mg/kg/day) for 7 days followed by subcutaneous injections of isoproterenol (ISO, 85 mg/kg/day) for 2 days to establish the MI model. Electrocardiograms were recorded and serum was used to detect creatine kinase (CK), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA). Cardiac tissues were used to detect Ca2+ concentration, morphological pathologies, reactive oxygen species (ROS), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In addition, the expression levels of Bcl-2-associated X (Bax), B cell lymphoma-2 (Bcl-2), Caspase-3, Toll-like receptor-4 (TLR4), myeloid differentiation protein 88 (MyD88), nuclear factor-kappa B (NF-κB), p-p38, p-extracellular signal-regulated kinase1/2 (p-ERK1/2) and c-Jun N-terminal kinase (p-JNK) were assessed by western blots in myocardial tissues. The effects of Bai on L-type Ca2+ currents (ICa-L), contractility and Ca2+ transients in rat isolated cardiomyocytes were monitored by using patch clamp technique and IonOptix system. Moreover, ISO-induced H9c2 myocardial injury was used to detect levels of inflammation and apoptosis. Results: Bai caused an improvement in heart rate, ST-segment and heart coefficients. Moreover, Bai led to a reduction in CK, LDH and Ca2+ concentrations and improved morphological pathologies. Bai inhibited ROS generation and reinstated SOD, CAT and GSH activities in addition to inhibition of replenishing MDA content. Also, expressions of IL-6 and TNF-α in addition to Bax and Caspase-3 were suppressed, while Bcl-2 expression was upregulated. Bai inhibited protein expressions of TLR4/MyD88/MAPKS/NF-κB and significantly inhibited ICa-L, myocyte contraction and Ca2+ transients. Furthermore, Bai caused a reduction in inflammation and apoptosis in H9c2 cells. Conclusions: Bai demonstrated ameliorative actions towards MI, which might have been related to attenuation of oxidative stress, inflammation and apoptosis via suppression of TLR4/MyD88/MAPKS/NF-κB pathway and adjustment of Ca2+ homeostasis via L-type Ca2+ channels.


Psoralen Induces Developmental Toxicity in Zebrafish Embryos/Larvae Through Oxidative Stress, Apoptosis, and Energy Metabolism Disorder.

  • Qing Xia‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

Psoralen toxicity is an issue of wide concern. However, an assay for psoralen-induced developmental toxicity has not been reported to date. Moreover, the underlying mechanism of psoralen-induced developmental toxicity is unclear. Therefore, this study attempted to develop a psoralen-induced developmental toxicity assay in zebrafish embryos/larvae. Psoralen treatment caused a decrease in the hatching rate and body length and a significant increase in the malformation rate of zebrafish. Yolk retention, pericardial edema, swim-bladder deficiency, and curved body shape were also observed after psoralen treatment. Yolk retention might have been caused by an abnormality in lipid metabolism. Further experiments indicated that psoralen exerted toxic effects on the developing heart, liver, phagocytes, and nervous system. Increased generation of reactive oxygen species, inhibition of total superoxide dismutase activity, and increased malondialdehyde concentrations indicated inhibition of antioxidant capacity and the presence of oxidative stress. A greater number of apoptotic cells were observed after psoralen exposure, relative to the control. Furthermore, the results of gene-expression analysis showed that psoralen induced developmental toxicity by means of oxidative stress, apoptosis, and energy metabolism abnormalities. These findings will be helpful in understanding psoralen-induced toxicity.


Ancient Chinese Medicine Herbal Formula Huanglian Jiedu Decoction as a Neoadjuvant Treatment of Chemotherapy by Improving Diarrhea and Tumor Response.

  • Yau-Tuen Chan‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Diarrhea is a major gastrointestinal complication in cancer patients receiving chemotherapy. Prognosis and treatment of chemotherapy-induced diarrhea (CID) remain unsatisfactory. This study aims to explore the potential of an ancient Chinese Medicine herbal formula Huanglian Jiedu Decoction (HLJDD) as an adjuvant treatment on CID.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: