Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 107 papers

A Peptide Derived from the HIV-1 gp120 Coreceptor-Binding Region Promotes Formation of PAP248-286 Amyloid Fibrils to Enhance HIV-1 Infection.

  • Jinquan Chen‎ et al.
  • PloS one‎
  • 2015‎

Semen is a major vehicle for HIV transmission. Prostatic acid phosphatase (PAP) fragments, such as PAP248-286, in human semen can form amyloid fibrils to enhance HIV infection. Other endogenous or exogenous factors present during sexual intercourse have also been reported to promote the formation of seminal amyloid fibrils.


Myricetin antagonizes semen-derived enhancer of viral infection (SEVI) formation and influences its infection-enhancing activity.

  • Ruxia Ren‎ et al.
  • Retrovirology‎
  • 2018‎

Semen is a critical vector for human immunodeficiency virus (HIV) sexual transmission and harbors seminal amyloid fibrils that can markedly enhance HIV infection. Semen-derived enhancer of viral infection (SEVI) is one of the best-characterized seminal amyloid fibrils. Due to their highly cationic properties, SEVI fibrils can capture HIV virions, increase viral attachment to target cells, and augment viral fusion. Some studies have reported that myricetin antagonizes amyloid β-protein (Aβ) formation; myricetin also displays strong anti-HIV activity in vitro.


The Role of Toll-Like Receptor in Inflammation and Tumor Immunity.

  • Xiaohong Cen‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

Toll-like receptors (TLRs) activation enables host to recognize a large number of pathogen-associated molecule patterns (PAMPs), ignite immune cells to discriminate between self and non-self, and then promote the following innate and adaptive immune responses. Accumulated clinical/preclinical evidences have proven TLRs to be critical role in the autoimmune diseases, including inflammatory and tumor-associated diseases. Activation of TLRs is becoming or has been a target for cancer treatment. It is shown that TLRs can induce preferable anti-tumor effect by eliciting inflammatory cytokines expression and cytotoxic T lymphocytes (CTLs) response. As adjuvant, TLRs agonists can launch a strong immune response to assist cancer radiotherapy and bio-chemotherapy. On the other hand, tumor-associated antigens acting as PAMPs, can also activate TLRs and induce tumor gene-related programmed cell death, including apoptosis, autophagy and programmed necrosis. While there are also arguments that the excessive TLRs expression will promote tumor deterioration in various organisms, as the TLR-induced inflammation will accelerate the cancer cells boost in the tumor microenvironment (TME). However, the effect of TLRs acting on cancers is still not quite clear today. In this review, we will summarize the recent researches of TLRs in cancer treatment and their role in TME, giving a brief overview on future expectation.


A novel synthetic dibenzocyclooctadiene lignan analog XLYF-104-6 attenuates lipopolysaccharide-induced inflammatory response in RAW264.7 macrophage cells and protects BALB/c mice from sepsis.

  • Chunping Gu‎ et al.
  • European journal of pharmacology‎
  • 2014‎

The wide range of inflammation mechanisms under control by NF-κB makes this pathway as an attractive target for new anti-inflammatory drugs. Herein, we showed that a new dibenzocyclooctadiene lignan analog XLYF-104-6, with a chemical name of 1,2,3,10,11-pentamethoxydibenzocycloocta-6,7-[c] pyrrole-1,3-dione, inhibited lipopolysaccharide (LPS)-induced NF-κB activation in RAW264.7 cells through preventing IκBα degradation and p65 nuclear translocation. The inhibitory activity of this compound on NF-κB activation contributes to the reduction of LPS-induced TNF-α and IL-6 productions. Notably, XLYF-104-6 suppressed LPS-induced iNOS expression and NO production in a NF-κB independent manner, since IKK inhibitor BAY 11-7082 has failed to exert similar inhibitory effect on iNOS expression and NO production. In addition, XLFY-104-6 also exerted anti-inflammatory action in endotoxemic mice by decreasing plasma LPS-induced TNF-α and IL-1β levels as well as increasing plasma LPS-induced IL-10 concentrations. These findings suggest XLYF-104-6 could act as a leading compound for developing a potential anti-inflammatory drug.


A Degraded Fragment of HIV-1 Gp120 in Rat Hepatocytes Forms Fibrils and Enhances HIV-1 Infection.

  • Jinquan Chen‎ et al.
  • Biophysical journal‎
  • 2017‎

Identification of the host or viral factors that enhance HIV infection is critical for preventing sexual transmission of HIV. Amyloid fibrils derived from human semen, including semen-derived enhancer of virus infection and semenogelins, enhance HIV-1 infection dramatically in vitro. In this study, we reported that a short-degraded peptide fragment 1 (DPF1) derived from native HIV-1 envelope protein gp120-loaded rat hepatocytes, formed fibrils by self-assembly and thus enhanced HIV-1 infection by promoting the binding of HIV-1 to target cells. Furthermore, DPF1-formed fibrils might be used as a crossing seed to accelerate the formation of semen-derived enhancer of virus infection and semenogelin fibrils. It will be helpful to clarify the viral factors that affect HIV-1 infection. DPF1 as an analog of gp120 containing the critical residues for CD4 binding might be useful for designing of HIV vaccines and developing HIV entry inhibitors.


Susceptibility of HIV-1 subtypes B', CRF07_BC and CRF01_AE that are predominantly circulating in China to HIV-1 entry inhibitors.

  • Xiaoling Yu‎ et al.
  • PloS one‎
  • 2011‎

The B', CRF07_BC and CRF01_AE are the predominant HIV-1 subtypes in China. It is essential to determine their baseline susceptibility to HIV entry inhibitors before these drugs are used in China.


CL-385319 inhibits H5N1 avian influenza A virus infection by blocking viral entry.

  • Shuwen Liu‎ et al.
  • European journal of pharmacology‎
  • 2011‎

CL-385319, an N-substituted piperidine, is effective in inhibiting infection of H1-, H2-, and to a lesser extent, H3-typed influenza A viruses by interfering with the fusogenic function of the viral hemagglutinin. Here we show that CL-385319 is effective in inhibiting infection of highly pathogenic H5N1 influenza A virus in Madin-Darby Canine Kidney (MDCK) cells with an IC50 of 27.03±2.54 μM. This compound with low cytotoxicity (CC50=1.48±0.01 mM) could also inhibit entry of pseudoviruses carrying hemagglutinins from H5N1 strains that were isolated from different places at different times, while it had no inhibitory activity on the entry of VSV-G pseudotyped particles. CL385319 could not inhibit N1-typed neuraminidase activity and the adsorption of H5-typed HA to chicken erythrocytes at the concentration as high as 1 mg/ml (2.8 mM). Computer-aid molecular docking analysis suggested that CL-385319 might bind to the cavity of HA2 stem region which was known to undergo significant rearrangement during membrane fusion. Pseudoviruses with M24A mutation in HA1 or F110S mutation in HA2 were resistant to CL-385319, indicating that these two residues in the cavity region may be critical for CL-385319 bindings. These findings suggest that CL-385319 can serve as a lead for development of novel virus entry inhibitors for preventing and treating H5N1 influenza A virus infection.


Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4.

  • Qian Zhao‎ et al.
  • Virology‎
  • 2005‎

We have identified two N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamide analogs as a novel class of human immunodeficiency virus type 1 (HIV-1) entry inhibitors that block the gp120-CD4 interaction, using database screening techniques. The lead compounds, NBD-556 and NBD-557, are small molecule organic compounds with drug-like properties. These compounds showed potent cell fusion and virus-cell fusion inhibitory activity at low micromolar levels. A systematic study showed that these compounds target viral entry by inhibiting the binding of HIV-1 envelope glycoprotein gp120 to the cellular receptor CD4 but did not inhibit reverse transcriptase, integrase, or protease, indicating that they do not target the later stages of the HIV-1 life cycle to inhibit HIV-1 infection. These compounds were equally potent inhibitors of both X4 and R5 viruses tested in CXCR4 and CCR5 expressing cell lines, respectively, indicating that their anti-HIV-1 activity is not dependent on the coreceptor tropism of the virus. A surface plasmon resonance study, which measures binding affinity, clearly demonstrated that these compounds bind to unliganded HIV-1 gp120 but not to the cellular receptor CD4. NBD-556 and NBD-557 were active against HIV-1 laboratory-adapted strains including an AZT-resistant strain and HIV-1 primary isolates, indicating that these compounds can potentially be further modified to become potent HIV-1 entry inhibitors.


Tolcapone Potently Inhibits Seminal Amyloid Fibrils Formation and Blocks Entry of Ebola Pseudoviruses.

  • Mengjie Qiu‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Ebola virus (EBOV), the causative pathogen of the deadly EBOV disease (EVD), can be transmitted via sexual transmission. Seminal amyloid fibrils have been found enhancers of EBOV infection. Currently, limited preventive vaccine or therapeutic is available to block EBOV infection through sexual intercourse. In this study, we repurpose tolcapone, a US Food and Drug Administration (FDA)-approved agent for Parkinson's disease, as a potent inhibitor of seminal amyloid fibrils, among which semen-derived enhancer of viral infection (SEVI) is the best-characterized. Tolcapone binds to the amyloidogenic region of the SEVI precursor peptide (PAP248-286) and inhibits PAP248-286 aggregation by disrupting PAP248-286 oligomerization. In addition, tolcapone interacts with preformed SEVI fibrils and influences the activity of SEVI in promoting infection of pseudovirus (PsV) carrying the envelope glycoprotein (GP) of the EBOV Zaire or Sudan species (Zaire PsV and Sudan PsV, respectively). Tolcapone significantly antagonizes SEVI-mediated enhancement of both Zaire PsV and Sudan PsV binding to and subsequent internalization in HeLa cells. Of note, tolcapone is also effective in inhibiting the entry of both Zaire PsV and Sudan PsV. Tolcapone inhibits viral entry possibly through binding with critical residues in EBOV GP. Moreover, the combination of tolcapone with two small-molecule entry inhibitors, including bepridil and sertraline, exhibited synergistic anti-EBOV effects in semen. Collectively, as a bifunctional agent targeting the viral infection-enhancing amyloid and the virus itself during sexual intercourse, tolcapone can act as either a prophylactic topical agent to prevent the sexual transmission of EBOV or a therapeutic to treat EBOV infection.


A novel selective histone deacetylase I inhibitor CC-4a activates latent HIV-1 through NF-κB pathway.

  • Wanzhen Lu‎ et al.
  • Life sciences‎
  • 2021‎

The fact that HIV-1 inside human bodies can perform reverse transcription and integrate resultant DNA into host chromosome remains a challenge in AIDS treatment. "Shock and kill" strategy was proposed to achieve the functional cure, which requested latency reactivating agents (LRAs) to reactivate latent HIV-1 and then extirpate viruses and infected cells with antiviral agents and the immune system. However, there are no feasible LRAs clinically applied. Herein, we examined a synthesized HDAC I inhibitor, CC-4a, in reactivating latent HIV-1 and investigated its mechanisms.


Chitosan Hydrogel Doped with PEG-PLA Nanoparticles for the Local Delivery of miRNA-146a to Treat Allergic Rhinitis.

  • Yu Su‎ et al.
  • Pharmaceutics‎
  • 2020‎

To prepare a binary formulation delivering miRNA-146 and evaluate a nucleic acid nasal delivery system by investigating its pharmacodynamic effects in allergic rhinitis. The gel/NPs/miR-146a thermosensitive in situ chitosan hydrogel carrying a nucleic acid was prepared and evaluated for its characteristics, including temperature sensitivity, gel strength, mucosal adhesion and drug release profile. After nasal administration of the formulation to ovalbumin-sensitized rats, the treatment of allergic rhinitis was verified by assessing nasal symptoms, hematology, hematoxylin-eosin (HE) staining and immunohistochemistry. Western Blot(WB) was used to analyze nasal inflammatory factors as well as miRNA-146-related factors, and the miR146 expression level was measured by PCR. Subsequently, the effects of the gel/NPs/miR-146a binary formulation were evaluated for the nasal delivery of nucleic acids in rhinitis therapy. The prepared binary formulation quickly formed a gel in the nasal cavity at a temperature of 34 °C with good mucosal adhesion, which delivered nucleic acids into the nasal mucosa stably and continuously. Gel/NPs/miR-146a was able to sustain the delivery of miRNA into the mucosa after nasal administration. When compared with the monolithic formulations, the gel/NPs/miR-146a binary formulation performed better regarding its nucleic acid delivery ability and pharmacodynamic effects. The gel/NPs/miR-146a binary preparation has a suitable nasal mucosal drug delivery ability and has a positive pharmacodynamic effect for the treatment of ovalbumin-induced rhinitis in rats. It can serve as a potential nucleic acid delivery platform for the treatment of allergic rhinitis.


Design, synthesis, and bioevaluation of pyrazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site with potent anticancer activities.

  • Gang Li‎ et al.
  • European journal of medicinal chemistry‎
  • 2020‎

A series of Pyrazolo[1,5-a]Pyrimidine analogs were designed and synthesized as novel tubulin inhibitors. Among them, compounds 1a and 1b showed the highest antiproliferative activity against a panel of cancer cell lines with average IC50 values of 24.8 nM and 28 nM, respectively. We determined the crystal structures of 1a and 1b in complex with tubulin and confirmed their direct binding to the colchicine site. Compounds 1a and 1b also effectively inhibited tubulin polymerization in vitro, induced cell cycle arrest in G2/M phase, and inhibited cancer cell migration. In addition, compound 1b exhibited high metabolic stability in human liver microsomes. Finally, 1b was highly effective in suppressing tumor growth in a B16-F10 mouse melanoma model without apparent toxicity. In summary, these results suggest that 1b represents a promising tubulin inhibitor worthy of further investigation.


RGD-PEG-PLA Delivers MiR-133 to Infarct Lesions of Acute Myocardial Infarction Model Rats for Cardiac Protection.

  • Bixi Sun‎ et al.
  • Pharmaceutics‎
  • 2020‎

Studies have shown that microRNA-133 (miR-133) plays a positive role in the growth of cardiac myocytes, the maintenance of cardiac homeostasis, and the recovery of cardiac function, which is of great significance for the recovery of acute myocardial infarction. However, the delivery of miRNA to the site of action remains a challenge at present. The purpose of this study was to design an ideal carrier to facilitate the delivery of miR-133 to the infarct lesion for cardiac protection. A disease model was constructed by ligating the left anterior descending coronary artery of rats, and polyethylene glycol (PEG)-polylactic acid (PLA) nanoparticles modified with arginine-glycine-aspartic acid tripeptide (RGD) carrying miR-133 were injected via the tail vein. The effects of miR-133 were evaluated from multiple perspectives, including cardiac function, blood indexes, histopathology, and myocardial cell apoptosis. The results showed that RGD-PEG-PLA maintained a high level of distribution in the hearts of model rats, indicating the role of the carrier in targeting the heart infarction lesions. RGD-PEG-PLA/miR-133 alleviated cardiac histopathological changes, reduced the apoptosis of cardiomyocytes, and reduced the levels of factors associated with myocardial injury. Studies on the mechanism of miR-133 by immunohistochemistry and polymerase chain reaction demonstrated that the expression level of Sirtuin3 (SIRT3) was increased and that the expression of adenosine monophosphate activated protein kinase (AMPK) decreased in myocardial tissue. In summary, the delivery of miR-133 by RGD-PEG-PLA carrier can achieve cardiac lesion accumulation, thereby improving the cardiac function damage and reducing the myocardial infarction area. The inhibition of cardiomyocyte apoptosis, inflammation, and oxidative stress plays a protective role in the heart. The mechanism may be related to the regulation of the SIRT3/AMPK pathway.


Synthesis and SARs of dopamine derivatives as potential inhibitors of influenza virus PAN endonuclease.

  • Yixian Liao‎ et al.
  • European journal of medicinal chemistry‎
  • 2020‎

Currently, influenza PAN endonuclease has become an attractive target for development of new drugs to treat influenza infections. Herein we report the discovery of new PAN endonuclease inhibitors derived from a chelating agent dopamine moiety. A series of dopamine amide derivatives and their conformationally constrained 1,2,3,4-tetrahydroisoquinoline-6,7-diol-based analogs were elaborated and assayed against influenza virus A/WSN/33 (H1N1). Most compounds exhibited moderate to excellent antiviral activities, generating a preliminary SARs. Among them, compounds 14 and 19 showed stronger anti-IAV activity compared with the reference Peramivir. Moreover, 14 and 19 demonstrated a concentration-dependent inhibition of PAN endonuclease based on both FRET assay and SPR assay. Docking studies were also performed to elucidate the binding mode of 14 and 19 with the PAN protein and to identify amino acids involved in their mechanism of action, which were well consistent with the biological data. This finding was beneficial to laying the foundation for the rational development of more effective PAN endonuclease inhibitors.


TNFα antagonist in combination with PD-1 blocker to prevent or retard malignant transformation of B[a]P-induced chronic lung inflammation.

  • Ai Zhao‎ et al.
  • Carcinogenesis‎
  • 2022‎

Benzo[a]pyrene (B[a]P) is a typical complete carcinogen in tobacco, but its mechanism of inducing the development of chronic pneumonia and consequent lung cancer is unclear. Here we elucidated the role of myeloid-derived suppressor cells (MDSCs) in developing B[a]P-induced chronic lung inflammation and efficacy of immunotherapy in preventing subsequent malignant transformation. Our study showed that as B[a]P could induce the accumulation of MDSCs in lung tissues and enhance the immunosuppressive effect regulated by cytokines and metabolites, thereby promoting the formation of immunosuppressive microenvironment, where effector T cells were exhausted, NK cells were dysfunctional, regulatory T (Treg) cells were expanded, polarized alveolar macrophages were transformed from M1 to M2. Subsequently, we performed the immunotherapy to block TNFɑ only or both TNFɑ and PD-1 at the early- or middle-stage of B[a]P-induced chronic lung inflammation to ameliorate the immunosuppressive microenvironment. We found that TNFɑ antagonist alone or with PD-1 blocker was shown to exert therapeutic effects on malignant transformation at the early stage of B[a]P-induced chronic lung inflammation. Taken together, our findings demonstrated that B[a]P-induced chronic lung inflammation resulted in the accumulation of MDSCs in lung tissues and exercise their immunosuppressive functions, thereby developing an immunosuppressive microenvironment, thus TNFɑ antagonist alone or with PD-1 blocker could prevent or retard the malignant transformation of B[a]P-induced chronic lung inflammation.


UHRF1 Suppresses HIV-1 Transcription and Promotes HIV-1 Latency by Competing with p-TEFb for Ubiquitination-Proteasomal Degradation of Tat.

  • Taizhen Liang‎ et al.
  • mBio‎
  • 2021‎

HIV-1 remains incurable due to viral reservoirs, which lead to durably latent HIV infection. Identifying novel host factors and deciphering the molecular mechanisms involved in the establishment and maintenance of latency are critical to discover new targets for the development of novel anti-HIV agents. Here, we show that ubiquitin-like with PHD and RING finger domain 1 (UHRF1) modulates HIV-1 5'-long terminal repeat (LTR)-driven transcription of the viral genome as a novel HIV-1 restriction factor. Correspondingly, UHRF1 depletion reversed the latency of HIV-1 proviruses. Mechanistically, UHRF1 competed with positive transcription factor b (p-TEFb) for the binding to the cysteine-rich motifs of HIV-1 Tat via its TTD, PHD, and RING finger domains. Furthermore, UHRF1 mediated K48-linked ubiquitination and proteasomal degradation of Tat in RING-dependent ways, leading to the disruption of Tat/cyclin T1/CDK9 complex and consequential impediment of transcription elongation. In summary, our findings revealed that UHRF1 is an important mediator of HIV-1 latency by controlling Tat-mediated transcriptional activation, providing novel insights on host-pathogen interaction for modulating HIV-1 latency, beneficial for the development of anti-AIDS therapies. IMPORTANCE HIV-1 latency is systematically modulated by host factors and viral proteins. In our work, we identified a critical role of host factor ubiquitin-like with PHD and RING finger domain 1 (UHRF1) in HIV-1 latency via the modulation of the viral protein Tat stability. By disrupting the Tat/cyclin T1/CDK9 complex, UHRF1 promotes the suppression of HIV-1 transcription and maintenance of HIV-1 latency. Our findings provide novel insights in controlling Tat expression via host-pathogen interaction for modulating HIV-1 latency. Based on our results, modulating UHRF1 expression or activity by specific inhibitors is a potential therapeutic strategy for latency reversal in HIV-1 patients.


Enhanced Tumor Imaging Using Glucosamine-Conjugated Polyacrylic Acid-Coated Ultrasmall Gadolinium Oxide Nanoparticles in Magnetic Resonance Imaging.

  • Shuwen Liu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Owing to a higher demand for glucosamine (GlcN) in metabolic processes in tumor cells than in normal cells (i.e., GlcN effects), tumor imaging in magnetic resonance imaging (MRI) can be highly improved using GlcN-conjugated MRI contrast agents. Here, GlcN was conjugated with polyacrylic acid (PAA)-coated ultrasmall gadolinium oxide nanoparticles (UGONs) (davg = 1.76 nm). Higher positive (brighter or T1) contrast enhancements at various organs including tumor site were observed in human brain glioma (U87MG) tumor-bearing mice after the intravenous injection of GlcN-PAA-UGONs into their tail veins, compared with those obtained with PAA-UGONs as control, which were rapidly excreted through the bladder. Importantly, the contrast enhancements of the GlcN-PAA-UGONs with respect to those of the PAA-UGONs were the highest in the tumor site owing to GlcN effects. These results demonstrated that GlcN-PAA-UGONs can serve as excellent T1 MRI contrast agents in tumor imaging via GlcN effects.


Stable and non-toxic ultrasmall gadolinium oxide nanoparticle colloids (coating material = polyacrylic acid) as high-performance T 1 magnetic resonance imaging contrast agents.

  • Xu Miao‎ et al.
  • RSC advances‎
  • 2018‎

For use as positive (T 1) magnetic resonance imaging contrast agents (MRI-CAs), gadolinium oxide (Gd2O3) nanoparticle colloids (i.e. nanoparticles coated with hydrophilic ligands) should be stable, non-toxic, and ultrasmall in particle diameter for renal excretion. In addition, they should have a high longitudinal water proton relaxivity (r 1) and r 2/r 1 ratio that is close to one (r 2 = transverse water proton relaxivity) for high-performance. In this study, we report ultrasmall Gd2O3 nanoparticle colloids [coating material = polyacrylic acid, M w = ∼5100 Da] satisfying these conditions. The particle diameter was monodisperse with an average value of 2.0 ± 0.1 nm. The colloidal suspension exhibited a high r 1 value of 31.0 ± 0.1 s-1 mM-1 and r 2/r 1 ratio of 1.2, where r 1 was ∼8 times higher than that of commercial Gd-chelates: the cooperative induction model was proposed to explain this. The effectiveness of the colloidal suspension as a high-performance T 1 MRI-CA was confirmed by taking in vivo T 1 MR images in a mouse after intravenous administration. Highly positive contrast enhancements were observed in various organs of the mouse such as the liver, kidneys, and bladder. The colloidal suspension was then excreted through the bladder.


Polyethylenimine-Coated Ultrasmall Holmium Oxide Nanoparticles: Synthesis, Characterization, Cytotoxicities, and Water Proton Spin Relaxivities.

  • Shuwen Liu‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2022‎

Water proton spin relaxivities, colloidal stability, and biocompatibility of nanoparticle magnetic resonance imaging (MRI) contrast agents depend on surface-coating ligands. In this study, hydrophilic and biocompatible polyethylenimines (PEIs) of different sizes (Mn = 1200 and 60,000 amu) were used as surface-coating ligands for ultrasmall holmium oxide (Ho2O3) nanoparticles. The synthesized PEI1200- and PEI60000-coated ultrasmall Ho2O3 nanoparticles, with an average particle diameter of 2.05 and 1.90 nm, respectively, demonstrated low cellular cytotoxicities, good colloidal stability, and appreciable transverse water proton spin relaxivities (r2) of 13.1 and 9.9 s-1mM-1, respectively, in a 3.0 T MR field with negligible longitudinal water proton spin relaxivities (r1) (i.e., 0.1 s-1mM-1) for both samples. Consequently, for both samples, the dose-dependent contrast changes in the longitudinal (R1) and transverse (R2) relaxation rate map images were negligible and appreciable, respectively, indicating their potential as efficient transverse T2 MRI contrast agents in vitro.


Acetyl-CoA Carboxylase (ACC) Inhibitor, CP640186, Effectively Inhibited Dengue Virus (DENV) Infection via Regulating ACC Phosphorylation.

  • Wenyu Wu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Dengue fever is the most common mosquito-borne viral disease and is caused by the dengue virus (DENV). There is still a lack of efficient drugs against DENV infection, so it is urgent to develop new inhibitors for future clinical use. Our previous research indicated the role of VEGFR2/AMPK in regulating cellular metabolism during DENV infection, while acetyl-CoA carboxylase (ACC) is located downstream of AMPK and plays a crucial role in mediating cellular lipid synthesis; therefore, we speculated that an ACC inhibitor could serve as an antiviral agent against DENV. Luckily, we found that CP640186, a reported noncompetitive ACC inhibitor, significantly inhibited DENV proliferation, and CP640186 clearly reduced DENV2 proliferation at an early stage with an EC50 of 0.50 μM. A mechanism study indicated that CP640186 inhibited ACC activation and destroyed the cellular lipid environment for viral proliferation. In the DENV2 infection mice model, oral CP640186 administration (10 mg/kg/day) significantly improved the mice survival rate after DENV2 infection. In summary, our research suggests that lipid synthesis plays an important role during DENV2 proliferation and indicates that CP640186 is a promising drug candidate against DNEV2 in the future.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: