Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 203 papers

Copy number variation analysis in single-suture craniosynostosis: multiple rare variants including RUNX2 duplication in two cousins with metopic craniosynostosis.

  • Heather C Mefford‎ et al.
  • American journal of medical genetics. Part A‎
  • 2010‎

Little is known about genes that underlie isolated single-suture craniosynostosis. In this study, we hypothesize that rare copy number variants (CNV) in patients with isolated single-suture craniosynostosis contain genes important for cranial development. Using whole genome array comparative genomic hybridization (CGH), we evaluated DNA from 186 individuals with single-suture craniosynostosis for submicroscopic deletions and duplications. We identified a 1.1 Mb duplication encompassing RUNX2 in two affected cousins with metopic synostosis and hypodontia. Given that RUNX2 is required as a master switch for osteoblast differentiation and interacts with TWIST1, mutations in which also cause craniosynostosis, we conclude that the duplication in this family is pathogenic, albeit with reduced penetrance. In addition, we find that a total of 7.5% of individuals with single-suture synostosis in our series have at least one rare deletion or duplication that contains genes and that has not been previously reported in unaffected individuals. The genes within and disrupted by CNVs in this cohort are potential novel candidate genes for craniosynostosis.


The Role of Seizure-Related SEZ6 as a Susceptibility Gene in Febrile Seizures.

  • John C Mulley‎ et al.
  • Neurology research international‎
  • 2011‎

Sixty cases of febrile seizures from a Chinese cohort had previously been reported with a strong association between variants in the seizure-related (SEZ) 6 gene and febrile seizures. They found a striking lack of genetic variation in their controls. We found genetic variation in SEZ6 at similar levels at the same DNA sequence positions in our 94 febrile seizure cases as in our 96 unaffected controls. Two of our febrile seizure cases carried rare variants predicted to have damaging consequences. Combined with some of the variants from the Chinese cohort, these data are compatible with a role for SEZ6 as a susceptibility gene for febrile seizures. However, the polygenic determinants underlying most cases of febrile seizures with complex inheritance remain to be determined.


Clinical and genetic analysis of a family with two rare reflex epilepsies.

  • Dorothée G A Kasteleijn-Nolst Trenité‎ et al.
  • Seizure‎
  • 2015‎

To determine clinical phenotypes, evolution and genetic background of a large family with a combination of two unusual forms of reflex epilepsies.


Autosomal dominant lateral temporal epilepsy (ADLTE): novel structural and single-nucleotide LGI1 mutations in families with predominant visual auras.

  • Emanuela Dazzo‎ et al.
  • Epilepsy research‎
  • 2015‎

Autosomal dominant lateral temporal epilepsy (ADLTE) is a genetic focal epilepsy syndrome characterized by prominent auditory or aphasic symptoms. Mutations in LGI1 account for less than 50% of ADLTE families. We assessed the impact of LGI1 microrearrangements in a collection of ADLTE families and sporadic lateral temporal epilepsy (LTE) patients, and investigated novel ADLTE and LTE patients.


Mutations affecting the SAND domain of DEAF1 cause intellectual disability with severe speech impairment and behavioral problems.

  • Anneke T Vulto-van Silfhout‎ et al.
  • American journal of human genetics‎
  • 2014‎

Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1.


Harnessing gene expression networks to prioritize candidate epileptic encephalopathy genes.

  • Karen L Oliver‎ et al.
  • PloS one‎
  • 2014‎

We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study. Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show replicable prioritization results using these three independent gene expression resources, two of which are brain-specific, with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic targets.


Characterisation of CASPR2 deficiency disorder--a syndrome involving autism, epilepsy and language impairment.

  • Pedro Rodenas-Cuadrado‎ et al.
  • BMC medical genetics‎
  • 2016‎

Heterozygous mutations in CNTNAP2 have been identified in patients with a range of complex phenotypes including intellectual disability, autism and schizophrenia. However heterozygous CNTNAP2 mutations are also found in the normal population. Conversely, homozygous mutations are rare in patient populations and have not been found in any unaffected individuals.


Recurrent reciprocal genomic rearrangements of 17q12 are associated with renal disease, diabetes, and epilepsy.

  • Heather C Mefford‎ et al.
  • American journal of human genetics‎
  • 2007‎

Most studies of genomic disorders have focused on patients with cognitive disability and/or peripheral nervous system defects. In an effort to broaden the phenotypic spectrum of this disease model, we assessed 155 autopsy samples from fetuses with well-defined developmental pathologies in regions predisposed to recurrent rearrangement, by array-based comparative genomic hybridization. We found that 6% of fetal material showed evidence of microdeletion or microduplication, including three independent events that likely resulted from unequal crossing-over between segmental duplications. One of the microdeletions, identified in a fetus with multicystic dysplastic kidneys, encompasses the TCF2 gene on 17q12, previously shown to be mutated in maturity-onset diabetes, as well as in a subset of pediatric renal abnormalities. Fine-scale mapping of the breakpoints in different patient cohorts revealed a recurrent 1.5-Mb de novo deletion in individuals with phenotypes that ranged from congenital renal abnormalities to maturity-onset diabetes of the young type 5. We also identified the reciprocal duplication, which appears to be enriched in samples from patients with epilepsy. We describe the first example of a recurrent genomic disorder associated with diabetes.


Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis.

  • Samuel F Berkovic‎ et al.
  • American journal of human genetics‎
  • 2008‎

Action myoclonus-renal failure syndrome (AMRF) is an autosomal-recessive disorder with the remarkable combination of focal glomerulosclerosis, frequently with glomerular collapse, and progressive myoclonus epilepsy associated with storage material in the brain. Here, we employed a novel combination of molecular strategies to find the responsible gene and show its effects in an animal model. Utilizing only three unrelated affected individuals and their relatives, we used homozygosity mapping with single-nucleotide polymorphism chips to localize AMRF. We then used microarray-expression analysis to prioritize candidates prior to sequencing. The disorder was mapped to 4q13-21, and microarray-expression analysis identified SCARB2/Limp2, which encodes a lysosomal-membrane protein, as the likely candidate. Mutations in SCARB2/Limp2 were found in all three families used for mapping and subsequently confirmed in two other unrelated AMRF families. The mutations were associated with lack of SCARB2 protein. Reanalysis of an existing Limp2 knockout mouse showed intracellular inclusions in cerebral and cerebellar cortex, and the kidneys showed subtle glomerular changes. This study highlights that recessive genes can be identified with a very small number of subjects. The ancestral lysosomal-membrane protein SCARB2/LIMP-2 is responsible for AMRF. The heterogeneous pathology in the kidney and brain suggests that SCARB2/Limp2 has pleiotropic effects that may be relevant to understanding the pathogenesis of other forms of glomerulosclerosis or collapse and myoclonic epilepsies.


De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias.

  • Katherine L Helbig‎ et al.
  • American journal of human genetics‎
  • 2018‎

Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α1-subunit of the voltage-gated CaV2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed CaV2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.


Second-hit DEPDC5 mutation is limited to dysmorphic neurons in cortical dysplasia type IIA.

  • Wei Shern Lee‎ et al.
  • Annals of clinical and translational neurology‎
  • 2019‎

Focal cortical dysplasia (FCD) causes drug-resistant epilepsy and is associated with pathogenic variants in mTOR pathway genes. How germline variants cause these focal lesions is unclear, however a germline + somatic "2-hit" model is hypothesized. In a boy with drug-resistant epilepsy, FCD, and a germline DEPDC5 pathogenic variant, we show that a second-hit DEPDC5 variant is limited to dysmorphic neurons, and the somatic mutation load correlates with both dysmorphic neuron density and the epileptogenic zone. These findings provide new insights into the molecular and cellular correlates of FCD determining drug-resistant epilepsy and refine conceptualization of the epileptogenic zone.


Biochemical phenotyping unravels novel metabolic abnormalities and potential biomarkers associated with treatment of GLUT1 deficiency with ketogenic diet.

  • Gerarda Cappuccio‎ et al.
  • PloS one‎
  • 2017‎

Global metabolomic profiling offers novel opportunities for the discovery of biomarkers and for the elucidation of pathogenic mechanisms that might lead to the development of novel therapies. GLUT1 deficiency syndrome (GLUT1-DS) is an inborn error of metabolism due to reduced function of glucose transporter type 1. Clinical presentation of GLUT1-DS is heterogeneous and the disorder mirrors patients with epilepsy, movement disorders, or any paroxysmal events or unexplained neurological manifestation triggered by exercise or fasting. The diagnostic biochemical hallmark of the disease is a reduced cerebrospinal fluid (CSF)/blood glucose ratio and the only available treatment is ketogenic diet. This study aimed at advancing our understanding of the biochemical perturbations in GLUT1-DS pathogenesis through biochemical phenotyping and the treatment of GLUT1-DS with a ketogenic diet. Metabolomic analysis of three CSF samples from GLUT1-DS patients not on ketogenic diet was feasible inasmuch as CSF sampling was used for diagnosis before to start with ketogenic diet. The analysis of plasma and urine samples obtained from GLUT1-DS patients treated with a ketogenic diet showed alterations in lipid and amino acid profiles. While subtle, these were consistent findings across the patients with GLUT1-DS on ketogenic diet, suggesting impacts on mitochondrial physiology. Moreover, low levels of free carnitine were present suggesting its consumption in GLUT1-DS on ketogenic diet. 3-hydroxybutyrate, 3-hydroxybutyrylcarnitine, 3-methyladipate, and N-acetylglycine were identified as potential biomarkers of GLUT1-DS on ketogenic diet. This is the first study to identify CSF, plasma, and urine metabolites associated with GLUT1-DS, as well as biochemical changes impacted by a ketogenic diet. Potential biomarkers and metabolic insights deserve further investigation.


Novel Missense CACNA1G Mutations Associated with Infantile-Onset Developmental and Epileptic Encephalopathy.

  • Géza Berecki‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The CACNA1G gene encodes the low-voltage-activated Cav3.1 channel, which is expressed in various areas of the CNS, including the cerebellum. We studied two missense CACNA1G variants, p.L208P and p.L909F, and evaluated the relationships between the severity of Cav3.1 dysfunction and the clinical phenotype. The presentation was of a developmental and epileptic encephalopathy without evident cerebellar atrophy. Both patients exhibited axial hypotonia, developmental delay, and severe to profound cognitive impairment. The patient with the L909F mutation had initially refractory seizures and cerebellar ataxia, whereas the L208P patient had seizures only transiently but was overall more severely affected. In transfected mammalian cells, we determined the biophysical characteristics of L208P and L909F variants, relative to the wild-type channel and a previously reported gain-of-function Cav3.1 variant. The L208P mutation shifted the activation and inactivation curves to the hyperpolarized direction, slowed the kinetics of inactivation and deactivation, and reduced the availability of Ca2+ current during repetitive stimuli. The L909F mutation impacted channel function less severely, resulting in a hyperpolarizing shift of the activation curve and slower deactivation. These data suggest that L909F results in gain-of-function, whereas L208P exhibits mixed gain-of-function and loss-of-function effects due to opposing changes in the biophysical properties. Our study expands the clinical spectrum associated with CACNA1G mutations, corroborating further the causal association with distinct complex phenotypes.


Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations.

  • Dervla M Connaughton‎ et al.
  • American journal of human genetics‎
  • 2020‎

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


A case-control collapsing analysis identifies epilepsy genes implicated in trio sequencing studies focused on de novo mutations.

  • Xiaolin Zhu‎ et al.
  • PLoS genetics‎
  • 2017‎

Trio exome sequencing has been successful in identifying genes with de novo mutations (DNMs) causing epileptic encephalopathy (EE) and other neurodevelopmental disorders. Here, we evaluate how well a case-control collapsing analysis recovers genes causing dominant forms of EE originally implicated by DNM analysis. We performed a genome-wide search for an enrichment of "qualifying variants" in protein-coding genes in 488 unrelated cases compared to 12,151 unrelated controls. These "qualifying variants" were selected to be extremely rare variants predicted to functionally impact the protein to enrich for likely pathogenic variants. Despite modest sample size, three known EE genes (KCNT1, SCN2A, and STXBP1) achieved genome-wide significance (p<2.68×10-6). In addition, six of the 10 most significantly associated genes are known EE genes, and the majority of the known EE genes (17 out of 25) originally implicated in trio sequencing are nominally significant (p<0.05), a proportion significantly higher than the expected (Fisher's exact p = 2.33×10-17). Our results indicate that a case-control collapsing analysis can identify several of the EE genes originally implicated in trio sequencing studies, and clearly show that additional genes would be implicated with larger sample sizes. The case-control analysis not only makes discovery easier and more economical in early onset disorders, particularly when large cohorts are available, but also supports the use of this approach to identify genes in diseases that present later in life when parents are not readily available.


Evaluation of GLUT1 variation in non-acquired focal epilepsy.

  • Alexander Peeraer‎ et al.
  • Epilepsy research‎
  • 2017‎

Brain glucose transport is dependent on glucose transporter 1 (GLUT1), encoded by the solute carrier family 2 member 1 (SLC2A1) gene. Mutations in SLC2A1 cause GLUT1 deficiency which is characterized by a broad spectrum of neurological phenotypes including generalized epilepsy, motor disorders, developmental delay and microcephaly. Recent case reports suggest SLC2A1 mutations can contribute to non-acquired focal epilepsy (NAFE) but interrogation of a large patient cohort has not been reported. We studied 200 patients with NAFE (126 with temporal lobe epilepsy) comprising 104 females and 96 males with a mean age of onset of 18 years. Polymerase chain reaction (PCR) and Sanger sequencing was performed to detect variants in all 10 coding exons and splice site regions of the SLC2A1 gene. We did not detect any pathogenic mutations in SLC2A1 in this cohort. Our data suggests that the frequency of GLUT1 mutations in NAFE is low. Limitations of this study include the mean age of onset and cohort size. Future research should focus on subpopulations of focal epilepsy with lower age of seizure onset particularly with co-existent movement disorders in which GLUT1 mutations may play a more important role.


The phenotypic spectrum of X-linked, infantile onset ALG13-related developmental and epileptic encephalopathy.

  • Alexandre N Datta‎ et al.
  • Epilepsia‎
  • 2021‎

Asparagine-linked glycosylation 13 (ALG13) deficiencies have been repeatedly described in the literature with the clinical phenotype of a developmental and epileptic encephalopathy (DEE). Most cases were females carrying the recurrent ALG13 de novo variant, p.(Asn107Ser), with normal transferrin electrophoresis.


Genomic and clinical predictors of lacosamide response in refractory epilepsies.

  • Sinéad B Heavin‎ et al.
  • Epilepsia open‎
  • 2019‎

Clinical and genetic predictors of response to antiepileptic drugs (AEDs) are largely unknown. We examined predictors of lacosamide response in a real-world clinical setting.


Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy.

  • Carmen De Caro‎ et al.
  • Scientific reports‎
  • 2019‎

We studied the effects of intestinal inflammation on pentylenetetrazole (PTZ)-induced seizures in mice and the effects thereon of some antiepileptic and anti-inflammatory treatments to establish if a link may exist. The agents tested were: alpha-lactoalbumin (ALAC), a whey protein rich in tryptophan, effective in some animal models of epilepsy and on colon/intestine inflammation, valproic acid (VPA), an effective antiepileptic drug in this seizure model, mesalazine (MSZ) an effective aminosalicylate anti-inflammatory treatment against ulcerative colitis and sodium butyrate (NaB), a short chain fatty acid (SCFA) normally produced in the intestine by gut microbiota, important in maintaining gut health and reducing gut inflammation and oxidative stress. Intestinal inflammation was induced by dextran sulfate sodium (DSS) administration for 6 days. Drug treatment was started on day 3 and lasted 11 days, when seizure susceptibility to PTZ was measured along with intestinal inflammatory markers (i.e. NF-κB, Iκ-Bα, COX-2, iNOS), histological damage, disease activity index (DAI) and SCFA concentration in stools. DSS-induced colitis increased seizure susceptibility and while all treatments were able to reduce intestinal inflammation, only ALAC and NaB exhibited significant antiepileptic properties in mice with induced colitis, while they were ineffective as antiepileptics at the same doses in control mice without colitis. Interestingly, in DSS-treated mice, VPA lost part of its antiepileptic efficacy in comparison to preventing seizures in non-DSS-treated mice while MSZ remained ineffective in both groups. Our study demonstrates that reducing intestinal inflammation through ALAC or NaB administration has specific anticonvulsant effects in PTZ-treated mice. Furthermore, it appears that intestinal inflammation may reduce the antiepileptic effects of VPA, although we confirm that it decreases seizure threshold in this group. Therefore, we suggest that intestinal inflammation may represent a valid antiepileptic target which should also be considered as a participating factor to seizure incidence in susceptible patients and also could be relevant in reducing standard antiepileptic drug efficacy.


Bi-allelic ADARB1 Variants Associated with Microcephaly, Intellectual Disability, and Seizures.

  • Tiong Yang Tan‎ et al.
  • American journal of human genetics‎
  • 2020‎

The RNA editing enzyme ADAR2 is essential for the recoding of brain transcripts. Impaired ADAR2 editing leads to early-onset epilepsy and premature death in a mouse model. Here, we report bi-allelic variants in ADARB1, the gene encoding ADAR2, in four unrelated individuals with microcephaly, intellectual disability, and epilepsy. In one individual, a homozygous variant in one of the double-stranded RNA-binding domains (dsRBDs) was identified. In the others, variants were situated in or around the deaminase domain. To evaluate the effects of these variants on ADAR2 enzymatic activity, we performed in vitro assays with recombinant proteins in HEK293T cells and ex vivo assays with fibroblasts derived from one of the individuals. We demonstrate that these ADAR2 variants lead to reduced editing activity on a known ADAR2 substrate. We also demonstrate that one variant leads to changes in splicing of ADARB1 transcript isoforms. These findings reinforce the importance of RNA editing in brain development and introduce ADARB1 as a genetic etiology in individuals with intellectual disability, microcephaly, and epilepsy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: