Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Upregulated LAMB3 increases proliferation and metastasis in thyroid cancer.

  • Yinghao Wang‎ et al.
  • OncoTargets and therapy‎
  • 2018‎

Thyroid cancer is the most commonly reported endocrine malignancy, and its increased incidence has been the highest in all human tumors in recent decades. To investigate the mechanism of papillary thyroid cancer (PTC) occurrence and progression, we performed RNA sequencing and found an upregulated gene, LAMB3. However, the biological function of LAMB3 is still not clear.


Scavenger receptor class A, member 5 is associated with thyroid cancer cell lines progression via epithelial-mesenchymal transition.

  • Chen Zheng‎ et al.
  • Cell biochemistry and function‎
  • 2020‎

Thyroid cancer (TC) has become one of most common endocrine malignancies in recent decades. Due to gene background polymorphism, it's outcome goes quite differently in each patient. For exploring the mechanism, we performed whole transcriptome sequencing of paired papillary thyroid carcinoma (PTC) and adjacent thyroid tissues. As a result, scavenger receptor class A member 5 (SCARA5) might be a crucial anti-oncogene associated with PTC. By RT-qPCR, we first detected the expression of SCARA5 in PTC tissue and three type of TC cell lines. Besides, The Cancer Genome Atlas (TCGA) data were gathered to analysis the relationship between SCARA5 and clinical feature. A series of loss-function experiments in TC cell lines (KTC-1 and BCPAP) to investigate the function of SCARA5 in PTC. The results showed that SCARA5 expression in PTC was lower than adjacent normal tissue. And, it's consistent with the TCGA database. After analyse the correlation between SCARA5 expression and clinicopathological features in TCGA database, we discovered that downregulated SCARA5 is significantly connected age (P = .04) and tumour size (P = .032). Knockdown of SCARA5 in TC cell line could significantly increase the function of cells proliferation, colony formation, migration, and invasion. Furthermore, we also proved that SCARA5 could modulate the expression of epithelial-mesenchymal transition-related proteins, which influence invasion and migration. To best of our knowledge, SCARA5 is a suppressor gene which was associated with PTC and might be a potential therapeutic target in the future. SIGNIFICANCE OF THE STUDY: Thyroid cancer (TC) has become one of most common endocrine malignancies in recent decades. By whole transcriptome sequencing of paired papillary thyroid carcinoma (PTC) and adjacent thyroid tissues, author discovered that scavenger receptor class A member 5 (SCARA5) might be crucial anti-oncogene associated with PTC. Furthermore, knocking-down of SCARA5 in TC cell line can increase the function of cells proliferation, colony formation, migration, and invasion. Author also proved that SCARA5 could modulate the expression of epithelial-mesenchymal transition-related proteins.


Prognostic role of overexpressed Bromodomain and extra-terminal family in ovarian cancer.

  • Mandika Chetry‎ et al.
  • Journal of Cancer‎
  • 2022‎

Background: BET family proteins have a role as epigenetic readers to accelerate the transcription of target genes. Several studies have shown that the BET protein family played important roles in several biological processes. Although, the prognostic influence of individual BET genes family in ovarian cancer patients remains unclear. Methods: We investigated BET mRNA prognostic roles subtypes in ovarian cancer patients by means of the KM plotter database. The BET mRNA expression and protein in cancer and normal ovarian cells was determined using qRTPCR and western blot. We used the HPA database to look at the protein expression profiles in normal and cancer tissues for this study. Results: Among BET members, mRNA expression BRD2 showed improve OS in all the ovarian malignancy patients, serous patients, stage III and IV, grade II and grade III, TP53 mutated ovarian cancer patients, as well as all patients treated with Platin based chemotherapy. As for BRD3, we found that BRD3 expression was related to better OS in endometrioid ovarian carcinoma and stage III+IV ovarian carcinoma patients, as well as all patients managed with Taxol and concurrent Taxol+Platin based chemotherapy. In addition, BRDT was associated with better OS in all ovarian carcinoma patients, grade I and grade III, all clinical stage (I+II, III+IV) patients, as well as all patients cured with Taxol and concurrent Taxol+Platin chemotherapy. Conclusion: We conclude that high expression of BRD2, BRD3, and BRDT predicted a better prognosis. mRNA expression of BET family is considerably associated with the prognosis of ovarian carcinoma and individual BET family gene could act as a predictive prognostic indicator in ovarian carcinoma.


MAL2 promotes proliferation, migration, and invasion through regulating epithelial-mesenchymal transition in breast cancer cell lines.

  • Adheesh Bhandari‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Breast cancer is one of the most common malignant tumors in women. However, the underlying molecular mechanisms of breast cancer are still far to clear. With the development of sequencing technology, we discovered that MAL2 is overexpressed in tumor tissues. But the major function of MAL2 in breast cancer has not to be well confirmed.


Expression and localization of nuclear factor erythroid 2-related factor 2 in the ovarian tissues of mice at different ages.

  • Namita Sindan‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

The aim of the present study was to investigate the expression and localization of nuclear factor erythroid 2-related factor 2 (Nrf2) in the ovaries of mice in different age groups, and to explore the association between Nrf2 and premature ovarian aging. The present study identified the localization of Nrf2 protein by performing immunohistochemical assay of ovarian tissues obtained from mice in different age groups. The mRNA expression levels of Nrf2 were detected via reverse transcription-quantitative polymerase chain reaction, while the expression levels of Nrf2 protein and apoptosis-associated proteins, including Caspase3 and B-cell lymphoma 2 (Bcl-2), were evaluated by western blot analysis. The results revealed that Nrf2 protein was mainly localized in granulosa cells, as well as in the secondary follicles and antral follicles of oocytes. Nrf2 expression levels were significantly lower in mice aged 4 days compared with 12-week-old mice (P<0.05), and the level of Nrf2 was lower in mice aged 40 weeks compared with those aged 12 weeks (P<0.05). In addition, the expression of the apoptosis protein Caspase3 in the ovarian tissue of mice aged 3, 8 and 12 weeks remained markedly greater when compared with those aged 4 days and 40 weeks. Bcl-2, an anti-apoptotic protein, was also significantly expressed in the ovarian tissues of juvenile (4-day-old) mice when compared with mice aged >40 weeks (P<0.05). In conclusion, Nrf2 was highly expressed in the ovarian tissues of mice of childbearing age (8-12 weeks old) and may possibly be involved in ovarian regulatory functions. The results indicated that Nrf2 expression and localization may have important implications in the prevention of ovarian aging.


SYT12 is a novel oncogene that promotes thyroid carcinoma progression and metastasis.

  • Lingli Jin‎ et al.
  • Journal of Cancer‎
  • 2021‎

Background: Thyroid malignancy is the most frequent endocrine malignant tumor whose incidence is still increasing. Mechanisms genomic variations play a major part in the pathogenesis of many types of malignancy. Synaptotagmin 12 (SYT12) is a member gene of the synaptotagmins family and SYT12's variants were shown to be associated with some malignancies. Nevertheless, SYT12's specific function and probable clinical value in papillary cancer were still unknown. Methods: We conducted complete genome sequence of 39 pairs PTC malignant neoplasm and matched non-neoplastic tissues. We found that SYT12 was significantly overexpressed in thyroid malignancy. Next, we investigated the expression level of SYT12 and the relation between clinical information and SYT12 expression in thyroid cancer in the Cancer Genome Atlas (TCGA). QRt-PCR of else 40 pairs local verified cohort was performed to confirm the sequencing data and TCGA cohort. Then, we used small interfering RNA (si-RNA) to knock down the expression of SYT12 in PTC cells. Finally, proliferation, cell colony formation, migration, invasion, and apoptosis assays were done to demonstrate the function of SYT12. Results: SYT12 is significantly overexpressed and higher expression of SYT12 upsurges the risk of lymph node metastatic and incidence rate of primary neoplasm multivariate focus type and classical histological type for PTC patients in TCGA cohort. In vitro experiments, the results of functional assays presented that knock-down of SYT12 inhibited the cell proliferation, cell colony formation, trans-well migration, and trans-well invasion and promoted cell apoptotic in PTC cell lines. Conclusion: SYT12 was a novel oncogene that promotes thyroid carcinoma progression and metastasis potential and a potential biomarker for diagnosis and treatment in PTC.


Aberrant expression of WDR4 affects the clinical significance of cancer immunity in pan-cancer.

  • Hanqian Zeng‎ et al.
  • Aging‎
  • 2021‎

Recent publications have presented research showing that WD repeat domain 4 (WDR4) plays a significant role in various kinds of malignant tumours. However, the expression profile of WDR4 is still unspecified, as is its significance in the analysis of human pan-cancer. We conducted an in-depth analysis of three aspects of WDR4 expression patterns from 33 types of cancer and determined the value of WDR4 for prognostic prediction and carcinoma drug resistance prediction. WDR4 was expressed in different cancer cell lines at inconsistent levels. Aberrant expression of WDR4 has been observed in various malignant cancers and is significantly implicated in overall survival outcomes. The expression level of WDR4 is also strongly associated with tumour immunity, such as immune scores and tumour-infiltrating immune cells. The level of WDR4 is related to microsatellite instability and tumour mutation burden in several types of malignancy, and validation studies implied that WDR4-associated terms and pathways are involved in malignancy. We explored the expression level of WDR4 across 33 types of cancer and showed that WDR4 plays a significant role during cancer development. More crucially, WDR4 is associated with immune infiltration, which suggests that WDR4 could be an immunotherapy target in cancers. In summary, our research showed that WDR4 plays a vital role in tumorigenesis and has the potential for to be targeted with treatments.


Synaptopodin-2 plays an important role in the metastasis of breast cancer via PI3K/Akt/mTOR pathway.

  • Erjie Xia‎ et al.
  • Cancer management and research‎
  • 2018‎

Synaptopodin 2 (SYNPO2) is a functioning protein. It has been detected in many malignancies. But the relation between SYNPO2 and breast cancer (BC) is unclear.


LncRNA PROX1-AS1 promotes proliferation, invasion, and migration in papillary thyroid carcinoma.

  • Yanyan Shen‎ et al.
  • Bioscience reports‎
  • 2018‎

Evidence has been provided that long noncoding RNAs (LncRNAs) play major roles in affecting essential physiological processes, and many of which seem to have functional roles in tumorigenesis and progression. However, the intrinsic molecular mechanism of LncRNAs acting on papillary thyroid carcinoma is not well understood. In the present study, we found that PROX1-AS1 levels were obviously increased in thyroid cancer cells compared with the normal thyroid epithelial cells. Knockdown of PROX1-AS1 gene expression by siRNA could inhibit cell proliferation. Subsequently, we also observed that silencing PROX1-AS1 might inhibit invasion and migration of thyroid cancer cell lines via modulating the expression of epithelial-mesenchymal transition related proteins. In conclusion, our study indicated that LncRNA PROX1-AS1 could promote papillary thyroid carcinoma development and might serve as a potential targeting marker for papillary thyroid carcinoma.


Original tumour suppressor gene polycystic kidney and hepatic disease 1-like 1 is associated with thyroid cancer cell progression.

  • Chen Zheng‎ et al.
  • Oncology letters‎
  • 2019‎

In recent decades, thyroid cancer (TC) has become one of the most common endocrine malignancies. Next-generation sequencing of paired TC and adjacent healthy thyroid tissues demonstrated that polycystic kidney and hepatic disease 1-like 1 (PKHD1L1) may serve as a tumour suppressor gene in thyroid cancer. However, the function of PKHD1L1 in thyroid cancer is still unknown. To validate the results of whole-transcriptome resequencing, the expression levels of PKHD1L1 were evaluated in 58 pairs of papillary thyroid cancer (PTC) tissue samples and three thyroid cancer cell lines. In addition, The Cancer Genome Atlas (TCGA) data were used to analyse the relationship between PKHD1L1 and patient clinicopathological features. Cell Counting Kit-8, colony formation, migration and invasion assays were performed to assess the effects of PKHD1L1 knockdown in three TC cell lines. PKHD1L1 expression was significantly lower in thyroid carcinoma compared with that in matched normal tissue, and this result was consistent with that in TCGA cohort. TCGA data demonstrated that PKHD1L1 downregulation was associated with a number of aggressive clinicopathological features, such as histological type, lymph node metastasis (LNM), distant metastasis, tumour size and clinical stage. Logistic regression analysis of data from patients with PTC revealed that PKHD1L1 expression, histological type, age and tumour size were independent high-risk factors for LNM. The PKHD1L1 biological function was investigated in the three TC cell lines: TPC-1, KTC1 and BCPAP. A loss of function experiment demonstrated that PKHD1L1 knockdown promoted cell proliferation, colony formation and cell invasion in TC cell lines. In conclusion, PKHD1L1 may be a tumour suppressor gene associated with PC, and may be a potential therapeutic target in the future.


Uridine phosphorylase 1 associates to biological and clinical significance in thyroid carcinoma cell lines.

  • Yaoyao Guan‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Thyroid cancer incidence has been continuity increasing worldwide. Uridine phosphorylase 1 (UPP1) is a protein-coding gene and has been detected that UPP1 was the higher expression in many solid malignancies, just as head and neck cancers, breast cancer, compared with paired normal tissue. But the act of UPP1 in thyroid cancer is not explicit. In this article, we investigate the function of UPP1 expression in thyroid cancer. The Cancer Genome Atlas (TCGA) unpaired thyroid cancer and normal RNA-seq data were downloaded, and our paired thyroid cancer and normal samples were analysed by a polymerase chain reaction. The expression of UPP1 was regulated by transfected small interfering RNA, and the function of UPP1 was determined via migration, invasion and cell proliferation assays. Western blot assay was achieved to determine the UPP1 expression correlates with the function of 5-FU regulate epithelial-mesenchymal transition. The significant upregulation of UPP1 in thyroid cancer tissues compared with normal thyroid tissues was revealed by our data and TCGA data. UPP1 overexpression was significantly correlated with lymph node metastasis, tumour stage and tumour size. In the cell, experiments showed that UPP1 low expression significantly suppressed the migration, invasion and proliferation. Western blot assay proves the effect of UPP1 expression on 5-FU regulates epithelial-mesenchymal transition pathway. UPP1 plays a crucial oncogene in thyroid cancer. Our findings indicate that UPP1 might be a biomarker of thyroid cancer and may act by regulating epithelial-mesenchymal transition (EMT).


COPB2 is up-regulated in breast cancer and plays a vital role in the metastasis via N-cadherin and Vimentin.

  • Adheesh Bhandari‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Breast cancer (BC) is a common malignant tumour for the adult female and its relative incidence has increased continuously in recent years. The primary molecular mechanisms of breast tumourigenesis remain unclear. With the sequencing technology, we found that coatomer protein complex subunit beta 2 (COPB2) gene is overexpressed in breast cancer tissues. However, the biological function of COPB2 in BC has yet to be determined. This current research demonstrates, significant up-regulation of COPB2 in tissues of breast cancer while comparing the adjacent normal tissue both invalidated cohort and TCGA cohort. Up-regulated expression of COPB2 was correlated with lymph node metastasis (LNM) and oestrogen receptor (ER) in the TCGA cohort and a high level of COPB2 was associated with age and lymph node metastasis in the validated cohort. Besides, logistic analysis illustrated in BC patient COPB2 expression, tumour size, age, ER and disease stage were independent high-risk factors of LNM. Loss of function experiments revealed that down-regulation of COPB2 could inhibit capacities of proliferation and cell invasion in MDA-MB-231 and BT-549 cell lines. Moreover, underexpression of COPB2 could decrease the EMT-related protein N-cadherin and vimentin which may lead to cell invasion. This current research provides new shreds of evidence that COPB2 overexpression shows significant character in the progression of breast cancer. To best of our knowledge, our findings indicated that COPB2 was vital oncogene which was associated with breast cancer.


lncRNA LINC00673 induces proliferation, metastasis and epithelial-mesenchymal transition in thyroid carcinoma via Kruppel-like factor 2.

  • Erjie Xia‎ et al.
  • International journal of oncology‎
  • 2018‎

The incidence of thyroid cancer has increased in the past decades; however, the underlying molecular mechanisms of thyroid cancer tumorigenesis remain unknown. Using sequencing technology, long intergenic non‑protein coding RNA 673 (LINC00673) was identified to be upregulated in several tumor tissues. However, the biological role of LINC00673 in thyroid carcinoma has yet to be determined. In this study, 60 matched pairs of thyroid tumor tissue and normal tissue were selected for study using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to validate previous findings; then, clinicopathologic features of the tissues were analyzed. Proliferation, colony formation, migration and invasion assays were performed, and epithelial-mesenchymal transition (EMT)-associated phenotypes were investigated following transfection with small interfering RNA to determine the specific role of LINC00673 in thyroid carcinoma cell lines (TPC1, KTC‑1 and BCPAP). The study revealed that long non‑coding RNA LINC00673 was significantly upregulated in thyroid cancer tissues compared with paired adjacent non‑tumor tissues using RT-qPCR and that high expression of LINC00673 is was associated with larger tumor size and lymph node metastasis in the validated cohort. Knockdown of LINC00673 inhibited cell proliferation and metastasis, whereas, LINC00673 overexpression had the opposite effect. The results showed that LINC00673 may influence EMT and the expression of Kruppel-like factor 2 (KLF2). Notably, KLF2 is considered a tumor suppressor gene in a variety of tumors. Finally, knock down of KLF2 enhanced thyroid carcinoma cell proliferation, and invasion and migration. In this study, the function of LINC00673 in promoting the proliferation and metastasis of thyroid carcinoma cell lines was identified, and LINC00673 may act as a novel therapeutic target for treating thyroid carcinoma.


SEC61G regulates breast cancer cell proliferation and metastasis by affecting the Epithelial-Mesenchymal Transition.

  • Lingli Jin‎ et al.
  • Journal of Cancer‎
  • 2022‎

Breast cancer is a common malignant tumor for women and its incidence has increased constantly in recent decades. The underlying molecular means of breast tumorigenesis endure uncertain. With the sequencing expertise, we found that the SEC61G gene is overexpressed in tumor tissues. However, the biological function of SEC61G in breast malignancy has yet to be determined. We investigated the SEC61G expression level, genetic alteration, IHC, immune infiltration, diagnostic value, survival analysis, and functional enrichment analysis by bioinformatics analysis. Then, vitro experiments were done. We investigated that SEC61G was greater in breast cancer tissues related to adjacent non-tumor tissues through qRT-PCR. We performed proliferation, colony formation, migration, invasion assays, and EMT-related phenotype to determine the specific biological functions of SEC61G in breast cancer cell lines (MDA-MB-231, BT-549) transfected with small interfering RNA. SEC61G expression and exon expression were higher in the tumor while the level of SEC61G methylation was higher in normal tissues. The expression level of SEC61G was connected with immune infiltration and survival and was an effective diagnostic and prognostic indicator. The functional enrichment analysis of SEC61G prompted that SEC61G might play a tumor-promoting role via the EMT pathway. In vitro experiments indicated that knocking down SEC61G considerably impaired the colony formation, cck-8, migration, and invasion, and induced apoptosis of the breast cancer cell lines. The vitro experiments also indicated that ectopic expression of SEC61G could influence EMT. This study revealed that SEC61G plays vital tumorigenic functions and acts as a novel oncogene in breast cancer.


ITGA7 functions as a tumor suppressor and regulates migration and invasion in breast cancer.

  • Adheesh Bhandari‎ et al.
  • Cancer management and research‎
  • 2018‎

Breast cancer is the most common malignancy in women and the underlying mechanism of breast cancer cell metastasis is still far from uncover. Integrin subunit alpha 7 (ITGA7) is a functioning protein. It has been detected in many malignancies. But the function of ITGA7 in breast cancer is not clear. Our aim is to explore ITGA7 expression and its role in breast cancer.


CLDN10 is Associated with Papillary Thyroid Cancer Progression.

  • Yili Zhou‎ et al.
  • Journal of Cancer‎
  • 2018‎

The incidence of thyroid cancer is staying at a high level. Claudin family is a skelemin contacting with the intercellular junction and can keep a dynamic balance between cells. Recently, many types of research indicated that the expression level of claudins is closely related to various cancer types and they can be novel diagnostic markers. For instance, Claudin-10(CLDN10) is the high expression in primary hepatocellular carcinoma, papillary thyroid cancer (PTC) and so on. But the biological role and function of CLDN10 in PTC are unclear. In our study, we measured the expression of CLDN10 in human normal tissues and matched PTC tissues by quantitative real-time polymerase chain reaction (qRT-PCR) and this observation was consistent with that in the TCGA cohort. We discovered that high expression of CLDN10 was correlated with lymph node metastasis, age and Histological type in TCGA cohorts. Kaplan-Meier analysis showed that patients with higher CLDN10 expression had a worse overall survival. In vitro, CLDN10 could promote cellular proliferation, migration, and invasion in PTC cell lines. In a word, CLDN10 is a functionally gene facilitating tumorgenesis in PTC and acts as an oncogene in PTC.


PSD3 is an oncogene that promotes proliferation, migration, invasion, and G1/S transition while inhibits apoptotic in papillary thyroid cancer.

  • Lingli Jin‎ et al.
  • Journal of Cancer‎
  • 2021‎

Background: The morbidity of thyroid cancer is gradually increasing, meanwhile, the average age of the morbidity population also becomes younger. Mechanisms genomic variations serve an important function for the pathogenesis of many cancer types. Pleckstrin and sec7 domain-containing 3 (PSD3), also known as EFA6R, was shown to be associated with some cancers such as acute myeloid leukemia, breast cancer metastasis, and astrocytoma. But it was unknown that whether PSD3 took effect and how did it work in thyroid cancer. Methods: We guessed that PSD3 might play an important role in thyroid cancer by consulting previous literature. Then, we analyzed the level of PSD3 expression in thyroid malignancy and the connection with clinical manifestation in The Cancer Genome Atlas (TCGA). And RNA extraction, reverse transcription, and real-time quantitative polymerase chain reaction (qRt-PCR) of 40 pairs of local samples were done to verify the result of TCGA. Then, PSD3 was knocked down by small interfering RNA (siRNA) for flowing functional experiments. Results: Bioinformatics and qRt-PCR analysis shown PSD3 was overexpressed in papillary thyroid cancer (PTC) and connected with the histological type (P=0.009) and risk of lymph node metastasis (P=0.016). In vitro assays, we confirmed that down-regulation PSD3 could not only suppress the cell proliferation, colony formation, cell migration, cell invasion, and G1/S cell cycle transition but also promote apoptosis in PTC cells. Conclusion: PSD3 promotes proliferation, migration, invasion, and G1/S transition while inhibits apoptotic in PTC and a possible biomarker in PTC.


Growth-associated protein 43 promotes thyroid cancer cell lines progression via epithelial-mesenchymal transition.

  • Chen Zheng‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Thyroid cancer is maintaining at a high incidence level and its carcinogenesis is mainly affected by a complex gene interaction. By analysis of the next-generation resequencing of paired papillary thyroid cancer (PTC) and adjacent thyroid tissues, we found that Growth Associated Protein 43 (GAP43), a phosphoprotein activated by protein kinase C, might be novel markers associated with PTC. However, its function in thyroid carcinoma has been poorly understood. We discovered that GAP43 was significantly overexpressed in thyroid carcinoma and these results were consistent with that in The Cancer Genome Atlas (TCGA) cohort. In addition, some clinicopathological features of GAP43 in TCGA database showed that up-regulated GAP43 is significantly connected to lymph node metastasis (P < 0.001) and tumour size (P = 0.038). In vitro experiments, loss of function experiments was performed to investigate GAP43 in PTC cell lines (TPC-1 and BCPAP). The results proved that GAP43 knockdown in PTC cell significantly decreased the function of cell proliferation, colony formation, migration, and invasion and induced cell apoptosis. Furthermore, we also indicated that GAP43 could modulate the expression of epithelial-mesenchymal transition-related proteins, which could influence invasion and migration. Put those results together, GAP43 is a gene which was associated with PTC and might be a potential therapeutic target.


Immortalization up-regulated protein promotes tumorigenesis and inhibits apoptosis of papillary thyroid cancer.

  • Lizhi Lin‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

The incidence of thyroid cancer is increasing in recent years worldwide, but the underlying mechanisms await further exploration. We utilized the bioinformatic analysis to discover that Immortalization up-regulated protein (IMUP) could be a potential oncogene in the papillary thyroid cancer (PTC). We verified this finding in several databases and locally validated cohorts. Clinicopathological features analyses showed that high expression of IMUP is positively related to malignant clinicopathological features in PTC. Braf-like PTC patients with higher IMUP expression had shorter disease-free survival. The biological function of IMUP in PTC cell lines (KTC-1 and TPC-1) was investigated using small interfering RNA. Our results showed that silencing IMUP suppresses proliferation, migration and invasion while inducing apoptosis in PTC cell lines. Changes of the expression of apoptosis-related molecules were identified by real-time quantitative polymerase chain reaction and Western blotting. We also found that YAP1 and TAZ, the critical effectors in the Hippo pathway, were down-regulated when the IMUP is silenced. Rescue experiments showed that overexpression of YAP1 reverses the tumour inhibitory effect caused by IMUP knockdown. Our study demonstrated that IMUP has an oncogenic function in PTC and might be a new target gene in the treatment of PTC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: