Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors.

  • Joshua B Kelley‎ et al.
  • BMC cell biology‎
  • 2010‎

Classical nuclear localization signal (NLS) dependent nuclear import is carried out by a heterodimer of importin alpha and importin beta. NLS cargo is recognized by importin alpha, which is bound by importin beta. Importin beta mediates translocation of the complex through the central channel of the nuclear pore, and upon reaching the nucleus, RanGTP binding to importin beta triggers disassembly of the complex. To date, six importin alpha family members, encoded by separate genes, have been described in humans.


The protein kinase C super-family member PKN is regulated by mTOR and influences differentiation during prostate cancer progression.

  • Chun-Song Yang‎ et al.
  • The Prostate‎
  • 2017‎

Phosphoinositide-3 (PI-3) kinase signaling has a pervasive role in cancer. One of the key effectors of PI-3 kinase signaling is AKT, a kinase that promotes growth and survival in a variety of cancers. Genetically engineered mouse models of prostate cancer have shown that AKT signaling is sufficient to induce prostatic epithelial neoplasia (PIN), but insufficient for progression to adenocarcinoma. This contrasts with the phenotype of mice with prostate-specific deletion of Pten, where excessive PI-3 kinase signaling induces both PIN and locally invasive carcinoma. We reasoned that additional PI-3 kinase effector kinases promote prostate cancer progression via activities that provide biological complementarity to AKT. We focused on the PKN kinase family members, which undergo activation in response to PI-3 kinase signaling, show expression changes in prostate cancer, and contribute to cell motility pathways in cancer cells.


Ubiquitin Modification by the E3 Ligase/ADP-Ribosyltransferase Dtx3L/Parp9.

  • Chun-Song Yang‎ et al.
  • Molecular cell‎
  • 2017‎

ADP-ribosylation of proteins is emerging as an important regulatory mechanism. Depending on the family member, ADP-ribosyltransferases either conjugate a single ADP-ribose to a target or generate ADP-ribose chains. Here we characterize Parp9, a mono-ADP-ribosyltransferase reported to be enzymatically inactive. Parp9 undergoes heterodimerization with Dtx3L, a histone E3 ligase involved in DNA damage repair. We show that the Dtx3L/Parp9 heterodimer mediates NAD+-dependent mono-ADP-ribosylation of ubiquitin, exclusively in the context of ubiquitin processing by E1 and E2 enzymes. Dtx3L/Parp9 ADP-ribosylates the carboxyl group of Ub Gly76. Because Gly76 is normally used for Ub conjugation to substrates, ADP-ribosylation of the Ub carboxyl terminus precludes ubiquitylation. Parp9 ADP-ribosylation activity therefore restrains the E3 function of Dtx3L. Mutation of the NAD+ binding site in Parp9 increases the DNA repair activity of the heterodimer. Moreover, poly(ADP-ribose) binding to the Parp9 macrodomains increases E3 activity. Dtx3L heterodimerization with Parp9 enables NAD+ and poly(ADP-ribose) regulation of E3 activity.


The RNA encoding the microtubule-associated protein tau has extensive structure that affects its biology.

  • Jonathan L Chen‎ et al.
  • PloS one‎
  • 2019‎

Tauopathies are neurodegenerative diseases that affect millions of people worldwide including those with Alzheimer's disease. While many efforts have focused on understanding the role of tau protein in neurodegeneration, there has been little done to systematically analyze and study the structures within tau's encoding RNA and their connection to disease pathology. Knowledge of RNA structure can provide insights into disease mechanisms and how to affect protein production for therapeutic benefit. Using computational methods based on thermodynamic stability and evolutionary conservation, we identified structures throughout the tau pre-mRNA, especially at exon-intron junctions and within the 5' and 3' untranslated regions (UTRs). In particular, structures were identified at twenty exon-intron junctions. The 5' UTR contains one structured region, which lies within a known internal ribosome entry site. The 3' UTR contains eight structured regions, including one that contains a polyadenylation signal. A series of functional experiments were carried out to assess the effects of mutations associated with mis-regulation of alternative splicing of exon 10 and to identify regions of the 3' UTR that contain cis-regulatory elements. These studies defined novel structural regions within the mRNA that affect stability and pre-mRNA splicing and may lead to new therapeutic targets for treating tau-associated diseases.


De novo mutations in SIK1 cause a spectrum of developmental epilepsies.

  • Jeanne Hansen‎ et al.
  • American journal of human genetics‎
  • 2015‎

Developmental epilepsies are age-dependent seizure disorders for which genetic causes have been increasingly identified. Here we report six unrelated individuals with mutations in salt-inducible kinase 1 (SIK1) in a series of 101 persons with early myoclonic encephalopathy, Ohtahara syndrome, and infantile spasms. Individuals with SIK1 mutations had short survival in cases with neonatal epilepsy onset, and an autism plus developmental syndrome after infantile spasms in others. All six mutations occurred outside the kinase domain of SIK1 and each of the mutants displayed autophosphorylation and kinase activity toward HDAC5. Three mutations generated truncated forms of SIK1 that were resistant to degradation and also showed changes in sub-cellular localization compared to wild-type SIK1. We also report the human neuropathologic examination of SIK1-related developmental epilepsy, with normal neuronal morphology and lamination but abnormal SIK1 protein cellular localization. Therefore, these results expand the genetic etiologies of developmental epilepsies by demonstrating SIK1 mutations as a cause of severe developmental epilepsy.


IGF1R and Src inhibition induce synergistic cytotoxicity in HNSCC through inhibition of FAK.

  • Christine E Lehman‎ et al.
  • Scientific reports‎
  • 2021‎

Head and neck cancer is the sixth most common cancer worldwide with a 5-year survival of only 65%. Targeting compensatory signaling pathways may improve therapeutic responses and combat resistance. Utilizing reverse phase protein arrays (RPPA) to assess the proteome and explore mechanisms of synergistic growth inhibition in HNSCC cell lines treated with IGF1R and Src inhibitors, BMS754807 and dasatinib, respectively, we identified focal adhesion signaling as a critical node. Focal Adhesion Kinase (FAK) and Paxillin phosphorylation were decreased as early as 15 min after treatment, and treatment with a FAK inhibitor, PF-562,271, was sufficient to decrease viability in vitro. Treatment of 3D spheroids demonstrated robust cytotoxicity suggesting that the combination of BMS754807 and dasatinib is effective in multiple experimental models. Furthermore, treatment with BMS754807 and dasatinib significantly decreased cell motility, migration, and invasion in multiple HNSCC cell lines. Most strikingly, treatment with BMS754807 and dasatinib, or a FAK inhibitor alone, significantly increased cleaved-PARP in human ex-vivo HNSCC patient tissues demonstrating a potential clinical utility for targeting FAK or the combined targeting of the IGF1R with Src. This ex-vivo result further confirms FAK as a vital signaling node of this combinatorial treatment and demonstrates therapeutic potential for targeting FAK in HNSCC patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: