Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 185 papers

Alzheimer's disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes.

  • Shobana Sekar‎ et al.
  • Neurobiology of aging‎
  • 2015‎

Alzheimer's disease (AD) is characterized by deficits in cerebral metabolic rates of glucose in the posterior cingulate (PC) and precuneus in AD subjects, and in APOEε4 carriers, decades before the onset of measureable cognitive deficits. However, the cellular and molecular basis of this phenotype remains to be clarified. Given the roles of astrocytes in energy storage and brain immunity, we sought to characterize the transcriptome of AD PC astrocytes. Cells were laser capture microdissected from AD (n = 10) and healthy elderly control (n = 10) subjects for RNA sequencing. We generated >5.22 billion reads and compared sequencing data between controls and AD patients. We identified differentially expressed mitochondria-related genes including TRMT61B, FASTKD2, and NDUFA4L2, and using pathway and weighted gene coexpression analyses, we identified differentially expressed immune response genes. A number of these genes, including CLU, C3, and CD74, have been implicated in beta amyloid generation or clearance. These data provide key insights into astrocyte-specific contributions to AD, and we present this data set as a publicly available resource.


Correlations between FDG PET glucose uptake-MRI gray matter volume scores and apolipoprotein E ε4 gene dose in cognitively normal adults: a cross-validation study using voxel-based multi-modal partial least squares.

  • Kewei Chen‎ et al.
  • NeuroImage‎
  • 2012‎

We previously introduced a voxel-based, multi-modal application of the partial least square algorithm (MMPLS) to characterize the linkage between patterns in a person's complementary complex datasets without the need to correct for multiple regional comparisons. Here we used it to demonstrate a strong correlation between MMPLS scores to characterize the linkage between the covarying patterns of fluorodeoxyglucose positron emission tomography (FDG PET) measurements of regional glucose metabolism and magnetic resonance imaging (MRI) measurements of regional gray matter associated with apolipoprotein E (APOE) ε4 gene dose (i.e., three levels of genetic risk for late-onset Alzheimer's disease (AD)) in cognitively normal, late-middle-aged persons. Coregistered and spatially normalized FDG PET and MRI images from 70% of the subjects (27 ε4 homozygotes, 36 ε4 heterozygotes and 67 ε4 non-carriers) were used in a hypothesis-generating MMPLS analysis to characterize the covarying pattern of regional gray matter volume and cerebral glucose metabolism most strongly correlated with APOE-ε4 gene dose. Coregistered and spatially normalized FDG PET and MRI images from the remaining 30% of the subjects were used in a hypothesis-testing MMPLS analysis to generate FDG PET-MRI gray matter MMPLS scores blind to their APOE genotype and characterize their relationship to APOE-ε4 gene dose. The hypothesis-generating analysis revealed covarying regional gray matter volume and cerebral glucose metabolism patterns that resembled those in traditional univariate analyses of AD and APOE-ε4 gene dose and PET-MRI scores that were strongly correlated with APOE-ε4 gene dose (p<1 × 10(-16)). The hypothesis-testing analysis results showed strong correlations between FDG PET-MRI gray matter scores and APOE-ε4 gene dose (p = 8.7 × 10(-4)). Our findings support the possibility of using the MMPLS to analyze complementary datasets from the same person in the presymptomatic detection and tracking of AD.


AMPK promotes survival and adipogenesis of ischemia-challenged ADSCs in an autophagy-dependent manner.

  • Chichi Li‎ et al.
  • Biochimica et biophysica acta. Molecular and cell biology of lipids‎
  • 2018‎

Some studies have shown that transplanted fat tissues usually cannot survive for long if adipose-derived stem cells (ADSCs) are removed from the tissues in advance. It is more meaningful to explore the mechanism mediating survival and differentiation of ADSCs in the transplanted microenvironment. AMP-activated protein kinase (AMPK) has been shown to be one of the energy receptors that regulate many aspects of cellular metabolism. AMPK activation has been implicated in models of adult ischemic injury, but the mechanism and the regulating effects of AMPK on survival and adipogenesis of transplanted ADSCs are still little known. In this study, we simulated the transplanted microenvironment using oxygen-glucose deprivation (OGD) to test the survival and adipogenesis of ADSCs. We found that OGD treatment triggered significant apoptosis and promoted autophagy. Simultaneously, OGD hindered the differentiation of ADSCs into mature adipocytes. After inhibiting AMPK, the OGD-induced apoptosis rate increased but autophagy was inhibited. The adipogenesis level also decreased. To show that the effects of AMPK on apoptosis and adipogenesis were autophagy-dependent, we pre-inhibited or pre-promoted autophagy with siATG7 or rapamycin while blocking AMPK. We found that inhibiting or improving autophagy exacerbated or alleviated the role of AMPK prohibition in apoptosis and adipogenesis. Furthermore, we showed that AMPK inhibition significantly lowered ULK1 activity but promoted mTOR activity, so that to inhibit autophagy. Our study shows that AMPK plays a protective role in maintaining survival and adipogenesis of OGD-challenged ADSCs partly by positively regulating autophagy. AMPK positively regulates autophagy by inhibiting mTOR but promoting ULK1 activity in OGD condition.


Topographic staging of tau positron emission tomography images.

  • Adam J Schwarz‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2018‎

It has been proposed that the signal distribution on tau positron emission tomography (PET) images could be used to define pathologic stages similar to those seen in neuropathology.


Left lateralized cerebral glucose metabolism declines in amyloid-β positive persons with mild cognitive impairment.

  • Christopher M Weise‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

Previous publications indicate that Alzheimer's Disease (AD) related cortical atrophy may develop in asymmetric patterns, with accentuation of the left hemisphere. Since fluorodeoxyglucose positron emission tomography (FDG PET) measurements of the regional cerebral metabolic rate of glucose (rCMRgl) provide a sensitive and specific marker of neurodegenerative disease progression, we sought to investigate the longitudinal pattern of rCMRgl in amyloid-positive persons with mild cognitive impairment (MCI) and dementia, hypothesizing asymmetric declines of cerebral glucose metabolism.


Impact of partial volume correction on the regional correspondence between in vivo [C-11]PiB PET and postmortem measures of Aβ load.

  • Davneet S Minhas‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

The positron emission tomography (PET) radiotracer Pittsburgh Compound B ([C-11]PiB) demonstrates a high affinity for fibrillary amyloid-beta (Aβ) aggregates. However, [C-11]PiB's in vivo sensitivity and specificity is an ongoing area of investigation in correlation studies with postmortem measures of Aβ pathology. One potential confound in PET-to-postmortem correlation studies is the limited spatial resolution of PET and resulting partial volume effects (PVEs). In this work, we evaluated the impact of three partial volume correction (PVC) techniques - the Meltzer, the modified Müller-Gärtner, and the Region-Based Voxel-Wise - on correlations between region-matched in vivo [C-11]PiB standardized uptake value ratios (SUVRs) and postmortem measures of Aβ pathology in a unique cohort of nine subjects. Postmortem Aβ pathology was assessed histologically as percent area coverage of 6-CN-PiB positive and Aβ immunoreactive (4G8 antibody) deposits. The application of all three PVC techniques resulted in minimally reduced PET-to-postmortem correlations relative to no PVC. However, correlations to both 6-CN-PiB and 4G8 percent area across all PVC techniques and no PVC were statistically significant at p < 0.01, suggesting that PVC is of minimal importance in understanding the relationship between Aβ PET and neuropathologically assessed Aβ. Thus, the utility of PVC in Aβ PET imaging should continue to be examined on an application-specific basis.


Cerebral blood flow in Alzheimer's disease.

  • Alex E Roher‎ et al.
  • Vascular health and risk management‎
  • 2012‎

Alzheimer's disease (AD) dementia is a consequence of heterogeneous and complex interactions of age-related neurodegeneration and vascular-associated pathologies. Evidence has accumulated that there is increased atherosclerosis/arteriosclerosis of the intracranial arteries in AD and that this may be additive or synergistic with respect to the generation of hypoxia/ischemia and cognitive dysfunction. The effectiveness of pharmacologic therapies and lifestyle modification in reducing cardiovascular disease has prompted a reconsideration of the roles that cardiovascular disease and cerebrovascular function play in the pathogenesis of dementia.


Mapping joint grey and white matter reductions in Alzheimer's disease using joint independent component analysis.

  • Xiaojuan Guo‎ et al.
  • Neuroscience letters‎
  • 2012‎

Alzheimer's disease (AD) is a neurodegenerative disease concomitant with grey and white matter damages. However, the interrelationship of volumetric changes between grey and white matter remains poorly understood in AD. Using joint independent component analysis, this study identified joint grey and white matter volume reductions based on structural magnetic resonance imaging data to construct the covariant networks in twelve AD patients and fourteen normal controls (NC). We found that three networks showed significant volume reductions in joint grey-white matter sources in AD patients, including (1) frontal/parietal/temporal-superior longitudinal fasciculus/corpus callosum, (2) temporal/parietal/occipital-frontal/occipital, and (3) temporal-precentral/postcentral. The corresponding expression scores distinguished AD patients from NC with 85.7%, 100% and 85.7% sensitivity for joint sources 1, 2 and 3, respectively; 75.0%, 66.7% and 75.0% specificity for joint sources 1, 2 and 3, respectively. Furthermore, the combined source of three significant joint sources best predicted the AD/NC group membership with 92.9% sensitivity and 83.3% specificity. Our findings revealed joint grey and white matter loss in AD patients, and these results can help elucidate the mechanism of grey and white matter reductions in the development of AD.


Brain glucose and acetoacetate metabolism: a comparison of young and older adults.

  • Scott Nugent‎ et al.
  • Neurobiology of aging‎
  • 2014‎

The extent to which the age-related decline in regional brain glucose uptake also applies to other important brain fuels is presently unknown. Ketones are the brain's major alternative fuel to glucose, so we developed a dual tracer positron emission tomography protocol to quantify and compare regional cerebral metabolic rates for glucose and the ketone, acetoacetate. Twenty healthy young adults (mean age, 26 years) and 24 healthy older adults (mean age, 74 years) were studied. In comparison with younger adults, older adults had 8 ± 6% (mean ± SD) lower cerebral metabolic rates for glucose in gray matter as a whole (p = 0.035), specifically in several frontal, temporal, and subcortical regions, as well as in the cingulate and insula (p ≤ 0.01, false discovery rate correction). The effect of age on cerebral metabolic rates for acetoacetate in gray matter did not reach significance (p = 0.11). Rate constants (min(-1)) of glucose (Kg) and acetoacetate (Ka) were significantly lower (-11 ± 6%; [p = 0.005], and -19 ± 5%; [p = 0.006], respectively) in older adults compared with younger adults. There were differential effects of age on Kg and Ka as seen by significant interaction effects in the caudate (p = 0.030) and post-central gyrus (p = 0.023). The acetoacetate index, which expresses the scaled residuals of the voxel-wise linear regression of glucose on ketone uptake, identifies regions taking up higher or lower amounts of acetoacetate relative to glucose. The acetoacetate index was higher in the caudate of young adults when compared with older adults (p ≤ 0.05 false discovery rate correction). This study provides new information about glucose and ketone metabolism in the human brain and a comparison of the extent to which their regional use changes during normal aging.


Genome-wide association meta-analysis of neuropathologic features of Alzheimer's disease and related dementias.

  • Gary W Beecham‎ et al.
  • PLoS genetics‎
  • 2014‎

Alzheimer's disease (AD) and related dementias are a major public health challenge and present a therapeutic imperative for which we need additional insight into molecular pathogenesis. We performed a genome-wide association study and analysis of known genetic risk loci for AD dementia using neuropathologic data from 4,914 brain autopsies. Neuropathologic data were used to define clinico-pathologic AD dementia or controls, assess core neuropathologic features of AD (neuritic plaques, NPs; neurofibrillary tangles, NFTs), and evaluate commonly co-morbid neuropathologic changes: cerebral amyloid angiopathy (CAA), Lewy body disease (LBD), hippocampal sclerosis of the elderly (HS), and vascular brain injury (VBI). Genome-wide significance was observed for clinico-pathologic AD dementia, NPs, NFTs, CAA, and LBD with a number of variants in and around the apolipoprotein E gene (APOE). GalNAc transferase 7 (GALNT7), ATP-Binding Cassette, Sub-Family G (WHITE), Member 1 (ABCG1), and an intergenic region on chromosome 9 were associated with NP score; and Potassium Large Conductance Calcium-Activated Channel, Subfamily M, Beta Member 2 (KCNMB2) was strongly associated with HS. Twelve of the 21 non-APOE genetic risk loci for clinically-defined AD dementia were confirmed in our clinico-pathologic sample: CR1, BIN1, CLU, MS4A6A, PICALM, ABCA7, CD33, PTK2B, SORL1, MEF2C, ZCWPW1, and CASS4 with 9 of these 12 loci showing larger odds ratio in the clinico-pathologic sample. Correlation of effect sizes for risk of AD dementia with effect size for NFTs or NPs showed positive correlation, while those for risk of VBI showed a moderate negative correlation. The other co-morbid neuropathologic features showed only nominal association with the known AD loci. Our results discovered new genetic associations with specific neuropathologic features and aligned known genetic risk for AD dementia with specific neuropathologic changes in the largest brain autopsy study of AD and related dementias.


Performance of [18F]flutemetamol amyloid imaging against the neuritic plaque component of CERAD and the current (2012) NIA-AA recommendations for the neuropathologic diagnosis of Alzheimer's disease.

  • Stephen Salloway‎ et al.
  • Alzheimer's & dementia (Amsterdam, Netherlands)‎
  • 2017‎

Performance of the amyloid tracer [18F]flutemetamol was evaluated against three pathology standard of truth (SoT) measures including neuritic plaques (CERAD "original" and "modified" and the amyloid component of the 2012 NIA-AA guidelines).


Altered connectivity pattern of hubs in default-mode network with Alzheimer's disease: an Granger causality modeling approach.

  • Xiaoyan Miao‎ et al.
  • PloS one‎
  • 2011‎

Evidences from normal subjects suggest that the default-mode network (DMN) has posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC) and inferior parietal cortex (IPC) as its hubs; meanwhile, these DMN nodes are often found to be abnormally recruited in Alzheimer's disease (AD) patients. The issues on how these hubs interact to each other, with the rest nodes of the DMN and the altered pattern of hubs with respect to AD, are still on going discussion for eventual final clarification.


Altered default mode network connectivity in Alzheimer's disease--a resting functional MRI and Bayesian network study.

  • Xia Wu‎ et al.
  • Human brain mapping‎
  • 2011‎

A number of functional magnetic resonance imaging (fMRI) studies reported the existence of default mode network (DMN) and its disruption due to the presence of a disease such as Alzheimer's disease (AD). In this investigation, first, we used the independent component analysis (ICA) technique to confirm the DMN difference between patients with AD and normal control (NC) reported in previous studies. Consistent with the previous studies, the decreased resting-state functional connectivity of DMN in AD was identified in posterior cingulated cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal cortex (IPC), inferior temporal cortex (ITC), and hippocampus (HC). Moreover, we introduced Bayesian network (BN) to study the effective connectivity of DMN and the difference between AD and NC. When compared the DMN effective connectivity in AD with the one in NC using a nonparametric random permutation test, we found that connections from left HC to left IPC, left ITC to right HC, right HC to left IPC, to MPFC and to PCC were all lost. In addition, in AD group, the connection directions between right HC and left HC, between left HC and left ITC, and between right IPC and right ITC were opposite to those in NC group. The connections of right HC to other regions, except left HC, within the BN were all statistically in-distinguishable from 0, suggesting an increased right hippocampal pathological and functional burden in AD. The altered effective connectivity in patients with AD may reveal more characteristics of the disease and may serve as a potential biomarker.


Characterizing Alzheimer's disease using a hypometabolic convergence index.

  • Kewei Chen‎ et al.
  • NeuroImage‎
  • 2011‎

This article introduces a hypometabolic convergence index (HCI) for the assessment of Alzheimer's disease (AD); compares it to other biological, cognitive and clinical measures; and demonstrates its promise to predict clinical decline in mild cognitive impairment (MCI) patients using data from the AD Neuroimaging Initiative (ADNI). The HCI is intended to reflect in a single measurement the extent to which the pattern and magnitude of cerebral hypometabolism in an individual's fluorodeoxyglucose positron emission tomography (FDG-PET) image correspond to that in probable AD patients, and is generated using a fully automated voxel-based image-analysis algorithm. HCIs, magnetic resonance imaging (MRI) hippocampal volume measurements, cerebrospinal fluid (CSF) assays, memory test scores, and clinical ratings were compared in 47 probable AD patients, 21 MCI patients who converted to probable AD within the next 18months, 76 MCI patients who did not, and 47 normal controls (NCs) in terms of their ability to characterize clinical disease severity and predict conversion rates from MCI to probable AD. HCIs were significantly different in the probable AD, MCI converter, MCI stable and NC groups (p=9e-17) and correlated with clinical disease severity. Using retrospectively characterized threshold criteria, MCI patients with either higher HCIs or smaller hippocampal volumes had the highest hazard ratios (HRs) for 18-month progression to probable AD (7.38 and 6.34, respectively), and those with both had an even higher HR (36.72). In conclusion, the HCI, alone or in combination with certain other biomarker measurements, has the potential to help characterize AD and predict subsequent rates of clinical decline. More generally, our conversion index strategy could be applied to a range of imaging modalities and voxel-based image-analysis algorithms.


Regional neural response differences in the determination of faces or houses positioned in a wide visual field.

  • Bin Wang‎ et al.
  • PloS one‎
  • 2013‎

In human visual cortex, the primary visual cortex (V1) is considered to be essential for visual information processing; the fusiform face area (FFA) and parahippocampal place area (PPA) are considered as face-selective region and places-selective region, respectively. Recently, a functional magnetic resonance imaging (fMRI) study showed that the neural activity ratios between V1 and FFA were constant as eccentricities increasing in central visual field. However, in wide visual field, the neural activity relationships between V1 and FFA or V1 and PPA are still unclear. In this work, using fMRI and wide-view present system, we tried to address this issue by measuring neural activities in V1, FFA and PPA for the images of faces and houses aligning in 4 eccentricities and 4 meridians. Then, we further calculated ratio relative to V1 (RRV1) as comparing the neural responses amplitudes in FFA or PPA with those in V1. We found V1, FFA, and PPA showed significant different neural activities to faces and houses in 3 dimensions of eccentricity, meridian, and region. Most importantly, the RRV1s in FFA and PPA also exhibited significant differences in 3 dimensions. In the dimension of eccentricity, both FFA and PPA showed smaller RRV1s at central position than those at peripheral positions. In meridian dimension, both FFA and PPA showed larger RRV1s at upper vertical positions than those at lower vertical positions. In the dimension of region, FFA had larger RRV1s than PPA. We proposed that these differential RRV1s indicated FFA and PPA might have different processing strategies for encoding the wide field visual information from V1. These different processing strategies might depend on the retinal position at which faces or houses are typically observed in daily life. We posited a role of experience in shaping the information processing strategies in the ventral visual cortex.


Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease.

  • Adam S Fleisher‎ et al.
  • Neurobiology of aging‎
  • 2013‎

Investigate apolipoprotein E ε4 (APOE4) gene and aging effects on florbetapir F18 positron emission tomography (PET) in normal aging and Alzheimer's disease (AD).


Postprandial plasma PYY concentrations are associated with increased regional gray matter volume and rCBF declines in caudate nuclei--a combined MRI and H2(15)O PET study.

  • Christopher M Weise‎ et al.
  • NeuroImage‎
  • 2012‎

The anorexigenic gastrointestinal hormone Peptide YY plays an important role in the communication between the gastrointestinal tract and the central nervous system. PYY has been shown to modulate brain activity in regions implicated in reward and food related behavior. Its effects on brain structure however, remain unknown. Voxel-based morphometry was used to investigate the relationship between fasting and postprandial plasma PYY concentrations and regional gray matter volume (GMV). For this analysis twenty adult, non diabetic Caucasians were included (18F/2M, age 31±9 y, percentage of body fat [PFAT] 32±8%) who had volumetric brain magnetic resonance images and underwent H(2)(15)O positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF), a marker of local neuronal activity, and measurements of plasma total PYY, prior to (fasting) and following a satiating liquid meal. Voxel-wise analysis revealed a regional positive association between postprandial PYY and gray matter volume bilaterally in the caudate nuclei. These associations remained significant (p<0.05) after small volume correction for multiple comparisons. Based on these findings we investigated whether postprandial PYY is associated with PET measured rCBF of the caudate nucleus. We found a significant negative association between average postprandial caudate rCBF and postprandial plasma PYY concentrations (r=-0.60, p<0.02, age, sex and PFAT adjusted). Average postprandial caudate rCBF was also negatively associated with rCBF in the right medial orbitofrontal cortex and the right hippocampal formation (p<0.05, corrected for multiple comparisons). Total PYY is positively associated with gray matter but negatively with postprandial activity in the caudate nuclei while caudate activity is negatively associated with rCBF in prefrontal and paralimbic regions implicated in reward behavior. Thus, PYY may act centrally to modulate eating behavior via striatal networks.


Assessing the reliability to detect cerebral hypometabolism in probable Alzheimer's disease and amnestic mild cognitive impairment.

  • Xia Wu‎ et al.
  • Journal of neuroscience methods‎
  • 2010‎

Fluorodeoxyglucose positron emission tomography (FDG-PET) studies report characteristic patterns of cerebral hypometabolism in probable Alzheimer's disease (pAD) and amnestic mild cognitive impairment (aMCI). This study aims to characterize the consistency of regional hypometabolism in pAD and aMCI patients enrolled in the AD neuroimaging initiative (ADNI) using statistical parametric mapping (SPM) and bootstrap resampling, and to compare bootstrap-based reliability index to the commonly used type-I error approach with or without correction for multiple comparisons. Batched SPM5 was run for each of 1000 bootstrap iterations to compare FDG-PET images from 74 pAD and 142 aMCI patients, respectively, to 82 normal controls. Maps of the hypometabolic voxels detected for at least a specific percentage of times over the 1000 runs were examined and compared to an overlap of the hypometabolic maps obtained from 3 randomly partitioned independent sub-datasets. The results from the bootstrap derived reliability of regional hypometabolism in the overall data set were similar to that observed in each of the three non-overlapping sub-sets using family-wise error. Strong but non-linear association was found between the bootstrap-based reliability index and the type-I error. For threshold p=0.0005, pAD was associated with extensive hypometabolic voxels in the posterior cingulate/precuneus and parietotemporal regions with reliability between 90% and 100%. Bootstrap analysis provides an alternative to the parametric family-wise error approach used to examine consistency of hypometabolic brain voxels in pAD and aMCI patients. These results provide a foundation for the use of bootstrap analysis characterize statistical ROIs or search regions in both cross-sectional and longitudinal FDG-PET studies. This approach offers promise in the early detection and tracking of AD, the evaluation of AD-modifying treatments, and other biologically or clinical important measurements using brain images and voxel-based data analysis techniques.


Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.

  • Alex D Leow‎ et al.
  • NeuroImage‎
  • 2006‎

Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.


Brain abnormalities in human obesity: a voxel-based morphometric study.

  • Nicola Pannacciulli‎ et al.
  • NeuroImage‎
  • 2006‎

Obesity is accompanied by damage to several tissues. Overweight is a risk factor for Alzheimer's disease and other neurodegenerative disorders. Whether structural abnormalities associated with excess body fat may also occur in the brain is unknown. We sought to determine to what extent excess body fat is associated with regional alterations in brain structure using voxel-based morphometry (VBM), a whole-brain unbiased technique based upon high-definition 3D magnetic resonance imaging (MRI) scans normalized into a common standard space and allowing for an objective assessment of neuroanatomical differences throughout the brain. We studied 24 obese (11 male, 13 female; age: 32 +/- 8 years; body mass index [BMI]: 39.4 +/- 4.7 kg/m2) and 36 lean (25 male, 11 female; mean age: 33 +/- 9 years; BMI: 22.7 +/- 2.2 kg/m2) non-diabetic Caucasians. In comparison with the group of lean subjects, the group of obese individuals had significantly lower gray matter density in the post-central gyrus, frontal operculum, putamen, and middle frontal gyrus (P < 0.01 after adjustment for sex, age, handedness, global tissue density, and multiple comparisons). BMI was negatively associated with GM density of the left post-central gyrus in obese but not lean subjects. This study identified structural brain differences in human obesity in several brain areas previously involved in the regulation of taste, reward, and behavioral control. These alterations may either precede obesity, representing a neural marker of increased propensity to gaining weight, or occur as a consequence of obesity, indicating that also the brain is affected by increased adiposity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: