Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding.

  • Mark R Woodford‎ et al.
  • Nature communications‎
  • 2016‎

Heat shock protein-90 (Hsp90) is an essential molecular chaperone in eukaryotes involved in maintaining the stability and activity of numerous signalling proteins, also known as clients. Hsp90 ATPase activity is essential for its chaperone function and it is regulated by co-chaperones. Here we show that the tumour suppressor FLCN is an Hsp90 client protein and its binding partners FNIP1/FNIP2 function as co-chaperones. FNIPs decelerate the chaperone cycle, facilitating FLCN interaction with Hsp90, consequently ensuring FLCN stability. FNIPs compete with the activating co-chaperone Aha1 for binding to Hsp90, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins. Lastly, downregulation of FNIPs desensitizes cancer cells to Hsp90 inhibitors, whereas FNIPs overexpression in renal tumours compared with adjacent normal tissues correlates with enhanced binding of Hsp90 to its inhibitors. Our findings suggest that FNIPs expression can potentially serve as a predictive indicator of tumour response to Hsp90 inhibitors.


CDK-dependent Hsp70 Phosphorylation controls G1 cyclin abundance and cell-cycle progression.

  • Andrew W Truman‎ et al.
  • Cell‎
  • 2012‎

In budding yeast, the essential functions of Hsp70 chaperones Ssa1-4 are regulated through expression level, isoform specificity, and cochaperone activity. Suggesting a novel regulatory paradigm, we find that phosphorylation of Ssa1 T36 within a cyclin-dependent kinase (CDK) consensus site conserved among Hsp70 proteins alters cochaperone and client interactions. T36 phosphorylation triggers displacement of Ydj1, allowing Ssa1 to bind the G1 cyclin Cln3 and promote its degradation. The stress CDK Pho85 phosphorylates T36 upon nitrogen starvation or pheromone stimulation, destabilizing Cln3 to delay onset of S phase. In turn, the mitotic CDK Cdk1 phosphorylates T36 to block Cln3 accumulation in G2/M. Suggesting broad conservation from yeast to human, CDK-dependent phosphorylation of Hsc70 T38 similarly regulates Cyclin D1 binding and stability. These results establish an active role for Hsp70 chaperones as signal transducers mediating growth control of G1 cyclin abundance and activity.


Rapid deacetylation of yeast Hsp70 mediates the cellular response to heat stress.

  • Linan Xu‎ et al.
  • Scientific reports‎
  • 2019‎

Hsp70 is a highly conserved molecular chaperone critical for the folding of new and denatured proteins. While traditional models state that cells respond to stress by upregulating inducible HSPs, this response is relatively slow and is limited by transcriptional and translational machinery. Recent studies have identified a number of post-translational modifications (PTMs) on Hsp70 that act to fine-tune its function. We utilized mass spectrometry to determine whether yeast Hsp70 (Ssa1) is differentially modified upon heat shock. We uncovered four lysine residues on Ssa1, K86, K185, K354 and K562 that are deacetylated in response to heat shock. Mutation of these sites cause a substantial remodeling of the Hsp70 interaction network of co-chaperone partners and client proteins while preserving essential chaperone function. Acetylation/deacetylation at these residues alter expression of other heat-shock induced chaperones as well as directly influencing Hsf1 activity. Taken together our data suggest that cells may have the ability to respond to heat stress quickly though Hsp70 deacetylation, followed by a slower, more traditional transcriptional response.


Zinc shapes the folding landscape of p53 and establishes a pathway for reactivating structurally diverse cancer mutants.

  • Adam R Blanden‎ et al.
  • eLife‎
  • 2020‎

Missense mutations in the p53 DNA-binding domain (DBD) contribute to half of new cancer cases annually. Here we present a thermodynamic model that quantifies and links the major pathways by which mutations inactivate p53. We find that DBD possesses two unusual properties-one of the highest zinc affinities of any eukaryotic protein and extreme instability in the absence of zinc-which are predicted to poise p53 on the cusp of folding/unfolding in the cell, with a major determinant being available zinc concentration. We analyze the 20 most common tumorigenic p53 mutations and find that 80% impair zinc affinity, thermodynamic stability, or both. Biophysical, cell-based, and murine xenograft experiments demonstrate that a synthetic zinc metallochaperone rescues not only mutations that decrease zinc affinity, but also mutations that destabilize DBD without impairing zinc binding. The results suggest that zinc metallochaperones have the capability to treat 120,500 patients annually in the U.S.


Catalytic inhibitor of Protein Phosphatase 5 activates the extrinsic apoptotic pathway by disrupting complex II in kidney cancer.

  • Elham F Ahanin‎ et al.
  • Cell chemical biology‎
  • 2023‎

Serine/threonine protein phosphatase-5 (PP5) is involved in tumor progression and survival, making it an attractive therapeutic target. Specific inhibition of protein phosphatases has remained challenging because of their conserved catalytic sites. PP5 contains its regulatory domains within a single polypeptide chain, making it a more desirable target. Here we used an in silico approach to screen and develop a selective inhibitor of PP5. Compound P053 is a competitive inhibitor of PP5 that binds to its catalytic domain and causes apoptosis in renal cancer. We further demonstrated that PP5 interacts with FADD, RIPK1, and caspase 8, components of the extrinsic apoptotic pathway complex II. Specifically, PP5 dephosphorylates and inactivates the death effector protein FADD, preserving complex II integrity and regulating extrinsic apoptosis. Our data suggests that PP5 promotes renal cancer survival by suppressing the extrinsic apoptotic pathway. Pharmacologic inhibition of PP5 activates this pathway, presenting a viable therapeutic strategy for renal cancer.


RNase H2 catalytic core Aicardi-Goutières syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice.

  • Vladislav Pokatayev‎ et al.
  • The Journal of experimental medicine‎
  • 2016‎

The neuroinflammatory autoimmune disease Aicardi-Goutières syndrome (AGS) develops from mutations in genes encoding several nucleotide-processing proteins, including RNase H2. Defective RNase H2 may induce accumulation of self-nucleic acid species that trigger chronic type I interferon and inflammatory responses, leading to AGS pathology. We created a knock-in mouse model with an RNase H2 AGS mutation in a highly conserved residue of the catalytic subunit, Rnaseh2a(G37S/G37S) (G37S), to understand disease pathology. G37S homozygotes are perinatal lethal, in contrast to the early embryonic lethality previously reported for Rnaseh2b- or Rnaseh2c-null mice. Importantly, we found that the G37S mutation led to increased expression of interferon-stimulated genes dependent on the cGAS-STING signaling pathway. Ablation of STING in the G37S mice results in partial rescue of the perinatal lethality, with viable mice exhibiting white spotting on their ventral surface. We believe that the G37S knock-in mouse provides an excellent animal model for studying RNASEH2-associated autoimmune diseases.


Assessment of inactivating stop codon mutations in forty Saccharomyces cerevisiae strains: implications for [PSI] prion- mediated phenotypes.

  • David A Fitzpatrick‎ et al.
  • PloS one‎
  • 2011‎

The yeast prion [PSI(+)] has been implicated in the generation of novel phenotypes by a mechanism involving a reduction in translation fidelity causing readthrough of naturally occurring stop codons. Some [PSI(+)] associated phenotypes may also be generated due to readthrough of inactivating stop codon mutations (ISCMs). Using next generation sequencing we have sequenced the genomes of two Saccharomyces cerevisiae strains that are commonly used for the study of the yeast [PSI(+)] prion. We have identified approximately 26,000 and 6,500 single nucleotide polymorphisms (SNPs) in strains 74-D694 and G600 respectively, compared to reference strain S288C. In addition to SNPs that produce non-synonymous amino acid changes we have also identified a number of SNPs that cause potential ISCMs in these strains, one of which we show is associated with a [PSI(+)]-dependent stress resistance phenotype in strain G600. We identified twenty-two potential ISCMs in strain 74-D694, present in genes involved in a variety of cellular processes including nitrogen metabolism, signal transduction and oxidative stress response. The presence of ISCMs in a subset of these genes provides possible explanations for previously identified [PSI(+)]-associated phenotypes in this strain. A comparison of ISCMs in strains G600 and 74-D694 with S. cerevisiae strains sequenced as part of the Saccharomyces Genome Resequencing Project (SGRP) shows much variation in the generation of strain-specific ISCMs and suggests this process is possible under complex genetic control. Additionally we have identified a major difference in the abilities of strains G600 and 74-D694 to grow at elevated temperatures. However, this difference appears unrelated to novel SNPs identified in strain 74-D694 present in proteins involved in the heat shock response, but may be attributed to other SNP differences in genes previously identified as playing a role in high temperature growth.


Tumor suppressor Tsc1 is a new Hsp90 co-chaperone that facilitates folding of kinase and non-kinase clients.

  • Mark R Woodford‎ et al.
  • The EMBO journal‎
  • 2017‎

The tumor suppressors Tsc1 and Tsc2 form the tuberous sclerosis complex (TSC), a regulator of mTOR activity. Tsc1 stabilizes Tsc2; however, the precise mechanism involved remains elusive. The molecular chaperone heat-shock protein 90 (Hsp90) is an essential component of the cellular homeostatic machinery in eukaryotes. Here, we show that Tsc1 is a new co-chaperone for Hsp90 that inhibits its ATPase activity. The C-terminal domain of Tsc1 (998-1,164 aa) forms a homodimer and binds to both protomers of the Hsp90 middle domain. This ensures inhibition of both subunits of the Hsp90 dimer and prevents the activating co-chaperone Aha1 from binding the middle domain of Hsp90. Conversely, phosphorylation of Aha1-Y223 increases its affinity for Hsp90 and displaces Tsc1, thereby providing a mechanism for equilibrium between binding of these two co-chaperones to Hsp90. Our findings establish an active role for Tsc1 as a facilitator of Hsp90-mediated folding of kinase and non-kinase clients-including Tsc2-thereby preventing their ubiquitination and proteasomal degradation.


Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder.

  • Naushaba Hasin‎ et al.
  • Molecular psychiatry‎
  • 2022‎

Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis - prioritized by statistical association, predicted deleteriousness, and network centrality - was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture.


An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models.

  • Jonathan P Celli‎ et al.
  • Scientific reports‎
  • 2014‎

While it is increasingly recognized that three-dimensional (3D) cell culture models recapitulate drug responses of human cancers with more fidelity than monolayer cultures, a lack of quantitative analysis methods limit their implementation for reliable and routine assessment of emerging therapies. Here, we introduce an approach based on computational analysis of fluorescence image data to provide high-content readouts of dose-dependent cytotoxicity, growth inhibition, treatment-induced architectural changes and size-dependent response in 3D tumour models. We demonstrate this approach in adherent 3D ovarian and pancreatic multiwell extracellular matrix tumour overlays subjected to a panel of clinically relevant cytotoxic modalities and appropriately designed controls for reliable quantification of fluorescence signal. This streamlined methodology reads out the high density of information embedded in 3D culture systems, while maintaining a level of speed and efficiency traditionally achieved with global colorimetric reporters in order to facilitate broader implementation of 3D tumour models in therapeutic screening.


Two RNase H2 Mutants with Differential rNMP Processing Activity Reveal a Threshold of Ribonucleotide Tolerance for Embryonic Development.

  • Ryo Uehara‎ et al.
  • Cell reports‎
  • 2018‎

RNase H2 has two distinct functions: initiation of the ribonucleotide excision repair (RER) pathway by cleaving ribonucleotides (rNMPs) incorporated during DNA replication and processing the RNA portion of an R-loop formed during transcription. An RNase H2 mutant lacking RER activity but supporting R-loop removal revealed that rNMPs in DNA initiate p53-dependent DNA damage response and early embryonic arrest in mouse. However, an RNase H2 AGS-related mutant with residual RER activity develops to birth. Estimations of the number of rNMPs in DNA in these two mutants define a ribonucleotide threshold above which p53 induces apoptosis. Below the threshold, rNMPs in DNA trigger an innate immune response. Compound heterozygous cells, containing both defective enzymes, retain rNMPs above the threshold, indicative of competition for RER substrates between active and inactive enzymes, suggesting that patients with compound heterozygous mutations in RNASEH2 genes may not reflect the properties of recombinantly expressed proteins.


Small molecule restoration of wildtype structure and function of mutant p53 using a novel zinc-metallochaperone based mechanism.

  • Xin Yu‎ et al.
  • Oncotarget‎
  • 2014‎

NSC319726 (ZMC1) is a small molecule that reactivates mutant p53 by restoration of WT structure/function to the most common p53 missense mutant (p53-R175H). We investigated the mechanism by which ZMC1 reactivates p53-R175H and provide evidence that ZMC1: 1) restores WT structure by functioning as a zinc-metallochaperone, providing an optimal concentration of zinc to facilitate proper folding; and 2) increases cellular reactive oxygen species that transactivate the newly conformed p53-R175H (via post-translational modifications), inducing an apoptotic program. We not only demonstrate that this zinc metallochaperone function is possessed by other zinc-binding small molecules, but that it can reactivate other p53 mutants with impaired zinc binding. This represents a novel mechanism for an anti-cancer drug and a new pathway to drug mutant p53.


Global transcript and phenotypic analysis of yeast cells expressing Ssa1, Ssa2, Ssa3 or Ssa4 as sole source of cytosolic Hsp70-Ssa chaperone activity.

  • Naushaba Hasin‎ et al.
  • BMC genomics‎
  • 2014‎

Cytosolic Hsp70 is a ubiquitous molecular chaperone that is involved in responding to a variety of cellular stresses. A major function of Hsp70 is to prevent the aggregation of denatured proteins by binding to exposed hydrophobic regions and preventing the accumulation of amorphous aggregates. To gain further insight into the functional redundancy and specialisation of the highly homologous yeast Hsp70-Ssa family we expressed each of the individual Ssa proteins as the sole source of Hsp70 in the cell and assessed phenotypic differences in prion propagation and stress resistance. Additionally we also analysed the global gene expression patterns in yeast strains expressing individual Ssa proteins, using microarray and RT-qPCR analysis.


Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation.

  • Marc Blondel‎ et al.
  • Scientific reports‎
  • 2016‎

6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI(+)] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI(+)]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI(+)] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: