Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Progranulin regulates neuronal outgrowth independent of sortilin.

  • Jennifer Gass‎ et al.
  • Molecular neurodegeneration‎
  • 2012‎

Progranulin (PGRN), a widely secreted growth factor, is involved in multiple biological functions, and mutations located within the PGRN gene (GRN) are a major cause of frontotemporal lobar degeneration with TDP-43-positive inclusions (FLTD-TDP). In light of recent reports suggesting PGRN functions as a protective neurotrophic factor and that sortilin (SORT1) is a neuronal receptor for PGRN, we used a Sort1-deficient (Sort1-/-) murine primary hippocampal neuron model to investigate whether PGRN's neurotrophic effects are dependent on SORT1. We sought to elucidate this relationship to determine what role SORT1, as a regulator of PGRN levels, plays in modulating PGRN's neurotrophic effects.


Glutathione S-transferase omega genes in Alzheimer and Parkinson disease risk, age-at-diagnosis and brain gene expression: an association study with mechanistic implications.

  • Mariet Allen‎ et al.
  • Molecular neurodegeneration‎
  • 2012‎

Glutathione S-transferase omega-1 and 2 genes (GSTO1, GSTO2), residing within an Alzheimer and Parkinson disease (AD and PD) linkage region, have diverse functions including mitigation of oxidative stress and may underlie the pathophysiology of both diseases. GSTO polymorphisms were previously reported to associate with risk and age-at-onset of these diseases, although inconsistent follow-up study designs make interpretation of results difficult. We assessed two previously reported SNPs, GSTO1 rs4925 and GSTO2 rs156697, in AD (3,493 ADs vs. 4,617 controls) and PD (678 PDs vs. 712 controls) for association with disease risk (case-controls), age-at-diagnosis (cases) and brain gene expression levels (autopsied subjects).


Premature termination codon readthrough upregulates progranulin expression and improves lysosomal function in preclinical models of GRN deficiency.

  • Jonathan Frew‎ et al.
  • Molecular neurodegeneration‎
  • 2020‎

Frontotemporal lobar degeneration (FTLD) is a devastating and progressive disorder, and a common cause of early onset dementia. Progranulin (PGRN) haploinsufficiency due to autosomal dominant mutations in the progranulin gene (GRN) is an important cause of FTLD (FTLD-GRN), and nearly a quarter of these genetic cases are due to a nonsense mutation. Premature termination codons (PTC) can be therapeutically targeted by compounds allowing readthrough, and aminoglycoside antibiotics are known to be potent PTC readthrough drugs. Restoring endogenous PGRN through PTC readthrough has not previously been explored as a therapeutic intervention in FTLD.


Global neuropathologic severity of Alzheimer's disease and locus coeruleus vulnerability influences plasma phosphorylated tau levels.

  • Melissa E Murray‎ et al.
  • Molecular neurodegeneration‎
  • 2022‎

Advances in ultrasensitive detection of phosphorylated tau (p-tau) in plasma has enabled the use of blood tests to measure Alzheimer's disease (AD) biomarker changes. Examination of postmortem brains of participants with antemortem plasma p-tau levels remains critical to understanding comorbid and AD-specific contribution to these biomarker changes.


ApoE variant p.V236E is associated with markedly reduced risk of Alzheimer's disease.

  • Christopher W Medway‎ et al.
  • Molecular neurodegeneration‎
  • 2014‎

Recent genome-wide association studies (GWAS) of late-onset Alzheimer's disease (LOAD) have identified single nucleotide polymorphisms (SNPs) which show significant association at the well-known APOE locus and at nineteen additional loci. Among the functional, disease-associated variants at these loci, missense variants are particularly important because they can be readily investigated in model systems to search for novel therapeutic targets. It is now possible to perform a low-cost search for these "actionable" variants by genotyping the missense variants at known LOAD loci already cataloged on the Exome Variant Server (EVS). In this proof-of-principle study designed to explore the efficacy of this approach, we analyzed three rare EVS variants in APOE, p.L28P, p.R145C and p.V236E, in our case control series of 9114 subjects. p.R145C proved to be too rare to analyze effectively. The minor allele of p.L28P, which was in complete linkage disequilibrium (D' = 1) with the far more common APOE ϵ4 allele, showed no association with LOAD (P = 0.75) independent of the APOE ϵ4 allele. p.V236E was significantly associated with a marked reduction in risk of LOAD (P = 7.5 × 10⁻⁰⁵; OR = 0.10, 0.03 to 0.45). The minor allele of p.V236E, which was in complete linkage disequilibrium (D' = 1) with the common APOE ϵ3 allele, identifies a novel LOAD-associated haplotype (APOE ϵ3b) which is associated with decreased risk of LOAD independent of the more abundant APOE ϵ2, ϵ3 and ϵ4 haplotypes. Follow-up studies will be important to confirm the significance of this association and to better define its odds ratio. The ApoE p.V236E substitution is the first disease-associated change located in the lipid-binding, C-terminal domain of the protein. Thus our study (i) identifies a novel APOE missense variant which may profitably be studied to better understand how ApoE function may be modified to reduce risk of LOAD and (ii) indicates that analysis of protein-altering variants cataloged on the EVS can be a cost-effective way to identify actionable functional variants at recently discovered LOAD loci.


Genetically-controlled Vesicle-Associated Membrane Protein 1 expression may contribute to Alzheimer's pathophysiology and susceptibility.

  • Daniel Sevlever‎ et al.
  • Molecular neurodegeneration‎
  • 2015‎

Alzheimer's disease is a neurodegenerative disorder in which extracellular deposition of β-amyloid (Aβ) oligomers causes synaptic injury resulting in early memory loss, altered homeostasis, accumulation of hyperphosphorylated tau and cell death. Since proteins in the SNAP (Soluble N-ethylmaleimide-sensitive factor Attachment Protein) REceptors (SNARE) complex are essential for neuronal Aβ release at pre-synaptic terminals, we hypothesized that genetically controlled SNARE expression could alter neuronal Aß release at the synapse and hence play an early role in Alzheimer's pathophysiology.


Network-driven plasma proteomics expose molecular changes in the Alzheimer's brain.

  • Philipp A Jaeger‎ et al.
  • Molecular neurodegeneration‎
  • 2016‎

Biological pathways that significantly contribute to sporadic Alzheimer's disease are largely unknown and cannot be observed directly. Cognitive symptoms appear only decades after the molecular disease onset, further complicating analyses. As a consequence, molecular research is often restricted to late-stage post-mortem studies of brain tissue. However, the disease process is expected to trigger numerous cellular signaling pathways and modulate the local and systemic environment, and resulting changes in secreted signaling molecules carry information about otherwise inaccessible pathological processes.


ABI3 and PLCG2 missense variants as risk factors for neurodegenerative diseases in Caucasians and African Americans.

  • Olivia J Conway‎ et al.
  • Molecular neurodegeneration‎
  • 2018‎

Rare coding variants ABI3_rs616338-T and PLCG2_rs72824905-G were identified as risk or protective factors, respectively, for Alzheimer's disease (AD).


Replication of EPHA1 and CD33 associations with late-onset Alzheimer's disease: a multi-centre case-control study.

  • Minerva M Carrasquillo‎ et al.
  • Molecular neurodegeneration‎
  • 2011‎

A recently published genome-wide association study (GWAS) of late-onset Alzheimer's disease (LOAD) revealed genome-wide significant association of variants in or near MS4A4A, CD2AP, EPHA1 and CD33. Meta-analyses of this and a previously published GWAS revealed significant association at ABCA7 and MS4A, independent evidence for association of CD2AP, CD33 and EPHA1 and an opposing yet significant association of a variant near ARID5B. In this study, we genotyped five variants (in or near CD2AP, EPHA1, ARID5B, and CD33) in a large (2,634 LOAD, 4,201 controls), independent dataset comprising six case-control series from the USA and Europe. We performed meta-analyses of the association of these variants with LOAD and tested for association using logistic regression adjusted by age-at-diagnosis, gender, and APOE ε4 dosage.


TDP-43-regulated cryptic RNAs accumulate in Alzheimer's disease brains.

  • Virginia Estades Ayuso‎ et al.
  • Molecular neurodegeneration‎
  • 2023‎

Inclusions of TAR DNA-binding protein 43 kDa (TDP-43) has been designated limbic-predominant, age-related TDP-43 encephalopathy (LATE), with or without co-occurrence of Alzheimer's disease (AD). Approximately, 30-70% AD cases present TDP-43 proteinopathy (AD-TDP), and a greater disease severity compared to AD patients without TDP-43 pathology. However, it remains unclear to what extent TDP-43 dysfunction is involved in AD pathogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: