Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

Citrin deficiency, a perplexing global disorder.

  • David Dimmock‎ et al.
  • Molecular genetics and metabolism‎
  • 2009‎

Citrin deficiency, caused by mutations in SLC25A13, can present with neonatal intrahepatic cholestasis or with adult onset neuropsychiatric, hepatic and pancreatic disease. Until recently, it had been thought to be found mostly in individuals of East Asian ancestry. A key diagnostic feature has been the deficient argininosuccinate synthetase (ASS) activity (E.C. 6.3.4.5) in liver, with normal activity in skin fibroblasts. In this series we describe the clinical presentation of 10 patients referred to our laboratories for sequence analysis of the SCL25A13 gene, including several patients who presented with elevated citrulline on newborn screening. In addition to sequence analysis performed on all patients, ASS enzyme activity, citrulline incorporation and Western blot analysis for ASS and citrin were performed on skin fibroblasts if available. We have found 5 unreported mutations including two apparent founder mutations in three unrelated French-Canadian patients. In marked contrast to previous cases, these patients have a markedly reduced ASS activity in skin fibroblasts. The presence of citrin protein on Western blot in three of our cases reduces the sensitivity of a screening test based on protein immunoblotting. The finding of citrin mutations in patients of Arabic, Pakistani, French Canadian and Northern European origins supports the concept that citrin deficiency is a panethnic disease.


The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities.

  • Jessica X Chong‎ et al.
  • American journal of human genetics‎
  • 2015‎

Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families.


PhenoDB, GeneMatcher and VariantMatcher, tools for analysis and sharing of sequence data.

  • Elizabeth Wohler‎ et al.
  • Orphanet journal of rare diseases‎
  • 2021‎

With the advent of whole exome (ES) and genome sequencing (GS) as tools for disease gene discovery, rare variant filtering, prioritization and data sharing have become essential components of the search for disease genes and variants potentially contributing to disease phenotypes. The computational storage, data manipulation, and bioinformatic interpretation of thousands to millions of variants identified in ES and GS, respectively, is a challenging task. To aid in that endeavor, we constructed PhenoDB, GeneMatcher and VariantMatcher.


The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources.

  • Marina T DiStefano‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2022‎

Several groups and resources provide information that pertains to the validity of gene-disease relationships used in genomic medicine and research; however, universal standards and terminologies to define the evidence base for the role of a gene in disease and a single harmonized resource were lacking. To tackle this issue, the Gene Curation Coalition (GenCC) was formed.


Pathogenic Variants in NUP214 Cause "Plugged" Nuclear Pore Channels and Acute Febrile Encephalopathy.

  • Boris Fichtman‎ et al.
  • American journal of human genetics‎
  • 2019‎

We report biallelic missense and frameshift pathogenic variants in the gene encoding human nucleoporin NUP214 causing acute febrile encephalopathy. Clinical symptoms include neurodevelopmental regression, seizures, myoclonic jerks, progressive microcephaly, and cerebellar atrophy. NUP214 and NUP88 protein levels were reduced in primary skin fibroblasts derived from affected individuals, while the total number and density of nuclear pore complexes remained normal. Nuclear transport assays exhibited defects in the classical protein import and mRNA export pathways in affected cells. Direct surface imaging of fibroblast nuclei by scanning electron microscopy revealed a large increase in the presence of central particles (known as "plugs") in the nuclear pore channels of affected cells. This observation suggests that large transport cargoes may be delayed in passage through the nuclear pore channel, affecting its selective barrier function. Exposure of fibroblasts from affected individuals to heat shock resulted in a marked delay in their stress response, followed by a surge in apoptotic cell death. This suggests a mechanistic link between decreased cell survival in cell culture and severe fever-induced brain damage in affected individuals. Our study provides evidence by direct imaging at the single nuclear pore level of functional changes linked to a human disease.


PhenoDB: a new web-based tool for the collection, storage, and analysis of phenotypic features.

  • Ada Hamosh‎ et al.
  • Human mutation‎
  • 2013‎

To interpret whole exome/genome sequence data for clinical and research purposes, comprehensive phenotypic information, knowledge of pedigree structure, and results of previous clinical testing are essential. With these requirements in mind and to meet the needs of the Centers for Mendelian Genomics project, we have developed PhenoDB (http://phenodb.net), a secure, Web-based portal for entry, storage, and analysis of phenotypic and other clinical information. The phenotypic features are organized hierarchically according to the major headings and subheadings of the Online Mendelian Inheritance in Man (OMIM®) clinical synopses, with further subdivisions according to structure and function. Every string allows for a free-text entry. All of the approximately 2,900 features use the preferred term from Elements of Morphology and are fully searchable and mapped to the Human Phenotype Ontology and Elements of Morphology. The PhenoDB allows for ascertainment of relevant information from a case in a family or cohort, which is then searchable by family, OMIM number, phenotypic feature, mode of inheritance, genes screened, and so on. The database can also be used to format phenotypic data for submission to dbGaP for appropriately consented individuals. PhenoDB was built using Django, an open source Web development tool, and is freely available through the Johns Hopkins McKusick-Nathans Institute of Genetic Medicine (http://phenodb.net).


McKusick's Online Mendelian Inheritance in Man (OMIM).

  • Joanna Amberger‎ et al.
  • Nucleic acids research‎
  • 2009‎

McKusick's Online Mendelian Inheritance in Man (OMIM; http://www.ncbi.nlm.nih.gov/omim), a knowledgebase of human genes and phenotypes, was originally published as a book, Mendelian Inheritance in Man, in 1966. The content of OMIM is derived exclusively from the published biomedical literature and is updated daily. It currently contains 18,961 full-text entries describing phenotypes and genes. To date, 2239 genes have mutations causing disease, and 3770 diseases have a molecular basis. Approximately 70 new entries are added and 700 entries are updated per month. OMIM is expanding content and organization in response to shifting biological paradigms and advancing biotechnology.


Monochorionic twins with 15q26.3 duplication presenting with selective intrauterine growth restriction and discordant cardiac anomalies: A case report.

  • Suraj Kannan‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2022‎

Duplication of the distal end of chromosome 15q has been previously implicated in a characteristic overgrowth syndrome. Additionally, many patients have other congenital malformations, including cardiac, renal, genital, and musculoskeletal anomalies. However, some patients may present with intrauterine growth restriction and short stature. Different breakpoints within 15q, as well as different environmental factors, may underlie these varied presentations.


Three decades of the Human Genome Organization.

  • Charles Lee‎ et al.
  • American journal of medical genetics. Part A‎
  • 2021‎

The Human Genome Organization (HUGO) was initially established in 1988 to help integrate international scientific genomic activity and to accelerate the diffusion of knowledge from the efforts of the human genome project. Its founding President was Victor McKusick. During the late 1980s and 1990s, HUGO organized lively gene mapping meetings to accurately place genes on the genome as chromosomes were being sequenced. With the completion of the Human Genome Project, HUGO went through some transitions and self-reflection. In 2020, HUGO (which hosts a large annual scientific meeting and comprises the renowned HUGO Gene Nomenclature Committee [HGNC], responsible for naming genes, and an outstanding Ethics Committee) was merged with the Human Genome Variation Society (HGVS; which defines the correct nomenclature for variation description) and the Human Variome Project (HVP; championed by the late Richard Cotton) into a single organization that is committed to assembling human genomic variation from all over the world. This consolidated effort, under a new Executive Board and seven focused committees, will facilitate efficient and effective communication and action to bring the benefits of increasing knowledge of genome diversity and biology to people all over the world.


What's in a name? Issues to consider when naming Mendelian disorders.

  • Sonja A Rasmussen‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2020‎

No abstract available


Online Mendelian Inheritance in Man (OMIM®): Victor McKusick's magnum opus.

  • Ada Hamosh‎ et al.
  • American journal of medical genetics. Part A‎
  • 2021‎

Victor McKusick's many contributions to medicine are legendary, but his magnum opus is Mendelian Inheritance in Man (MIM), his catalog of Mendelian phenotypes and their associated genes. The catalog, originally published in 1966 in book form, became available on the internet as Online Mendelian Inheritance in Man (OMIM®) in 1987. The first of 12 editions of MIM included 1486 entries; this number has increased to over 25,000 entries in OMIM as of April 2021, which demonstrates the growth of knowledge about Mendelian phenotypes and their genes through the years. OMIM now has over 20,000 unique users a day, including users from every country in the world. Many of the early decisions made by McKusick, such as to maintain MIM data in a computer-readable format, to separate phenotype entries from those for genes, and to give phenotypes and genes MIM numbers, have proved essential to the long-term utility and flexibility of his catalog. Based on his extensive knowledge of genetics and vision of its future in the field of medicine, he developed a framework for the capture and summary of information from the published literature on phenotypes and their associated genes; this catalog continues to serve as an indispensable resource to the genetics community.


The Human Phenotype Ontology in 2024: phenotypes around the world.

  • Michael A Gargano‎ et al.
  • Nucleic acids research‎
  • 2024‎

The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.


OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders.

  • Joanna S Amberger‎ et al.
  • Nucleic acids research‎
  • 2015‎

Online Mendelian Inheritance in Man, OMIM(®), is a comprehensive, authoritative and timely research resource of curated descriptions of human genes and phenotypes and the relationships between them. The new official website for OMIM, OMIM.org (http://omim.org), was launched in January 2011. OMIM is based on the published peer-reviewed biomedical literature and is used by overlapping and diverse communities of clinicians, molecular biologists and genome scientists, as well as by students and teachers of these disciplines. Genes and phenotypes are described in separate entries and are given unique, stable six-digit identifiers (MIM numbers). OMIM entries have a structured free-text format that provides the flexibility necessary to describe the complex and nuanced relationships between genes and genetic phenotypes in an efficient manner. OMIM also has a derivative table of genes and genetic phenotypes, the Morbid Map. OMIM.org has enhanced search capabilities such as genome coordinate searching and thesaurus-enhanced search term options. Phenotypic series have been created to facilitate viewing genetic heterogeneity of phenotypes. Clinical synopsis features are enhanced with UMLS, Human Phenotype Ontology and Elements of Morphology terms and image links. All OMIM data are available for FTP download and through an API. MIMmatch is a novel outreach feature to disseminate updates and encourage collaboration.


Assessment of incidental findings in 232 whole-exome sequences from the Baylor-Hopkins Center for Mendelian Genomics.

  • Julie Jurgens‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2015‎

In March 2013 the American College of Medical Genetics and Genomics published a list of 56 genes with the recommendation that pathogenic and likely pathogenic variants detected incidentally by clinical sequencing be reported to patients. As an initial step in determining the practical consequences of this recommendation in the research setting, we searched for variants in these genes in 232 whole-exome sequences from the Baylor-Hopkins Center for Mendelian Genomics.


Mutations in SPATA5 Are Associated with Microcephaly, Intellectual Disability, Seizures, and Hearing Loss.

  • Akemi J Tanaka‎ et al.
  • American journal of human genetics‎
  • 2015‎

Using whole-exome sequencing, we have identified in ten families 14 individuals with microcephaly, developmental delay, intellectual disability, hypotonia, spasticity, seizures, sensorineural hearing loss, cortical visual impairment, and rare autosomal-recessive predicted pathogenic variants in spermatogenesis-associated protein 5 (SPATA5). SPATA5 encodes a ubiquitously expressed member of the ATPase associated with diverse activities (AAA) protein family and is involved in mitochondrial morphogenesis during early spermatogenesis. It might also play a role in post-translational modification during cell differentiation in neuronal development. Mutations in SPATA5 might affect brain development and function, resulting in microcephaly, developmental delay, and intellectual disability.


The Human Phenotype Ontology in 2017.

  • Sebastian Köhler‎ et al.
  • Nucleic acids research‎
  • 2017‎

Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.


The impact of GeneMatcher on international data sharing and collaboration.

  • Ada Hamosh‎ et al.
  • Human mutation‎
  • 2022‎

GeneMatcher (genematcher.org) is a tool designed to connect individuals with an interest in the same gene. Now used around the world to create collaborations and generate the evidence needed to support novel disease gene identification, GeneMatcher is a founding member of the Matchmaker Exchange (MME; matchmakerexchange.org) and strongest possible advocate for global data sharing including those in resource-limited environments. As of October 1, 2021, there are 12,531 submitters from 94 countries who have submitted 58,134 submissions with 13,498 unique genes in the database. Among these genes, 8970 (64%) have matched at least once and the total number of matches is 378,806, growing by about 10,000 per month. GeneMatcher submitters increase by 80-120 each month and submissions grow by >800 per month, while unique genes and gene matches continue to grow steadily at rate of about 80 per month. The number of genes without a match peaked at 4371 in February of 2019 and despite the increase in the number of new submissions, the number of unique genes without a match continues to slowly decline, currently standing at 4,016. All submissions in GeneMatcher are available for matching across the MME.


The phenotypic spectrum of Schaaf-Yang syndrome: 18 new affected individuals from 14 families.

  • Michael D Fountain‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2017‎

Truncating mutations in the maternally imprinted, paternally expressed gene MAGEL2, which is located in the Prader-Willi critical region 15q11-13, have recently been reported to cause Schaaf-Yang syndrome, a Prader-Willi-like disease that manifests as developmental delay/intellectual disability, hypotonia, feeding difficulties, and autism spectrum disorder. The causality of the reported variants in the context of the patients' phenotypes was questioned, as MAGEL2 whole-gene deletions seem to cause little or no clinical phenotype.


The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species.

  • Kent A Shefchek‎ et al.
  • Nucleic acids research‎
  • 2020‎

In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven't been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics.


International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases.

  • Kym M Boycott‎ et al.
  • American journal of human genetics‎
  • 2017‎

Provision of a molecularly confirmed diagnosis in a timely manner for children and adults with rare genetic diseases shortens their "diagnostic odyssey," improves disease management, and fosters genetic counseling with respect to recurrence risks while assuring reproductive choices. In a general clinical genetics setting, the current diagnostic rate is approximately 50%, but for those who do not receive a molecular diagnosis after the initial genetics evaluation, that rate is much lower. Diagnostic success for these more challenging affected individuals depends to a large extent on progress in the discovery of genes associated with, and mechanisms underlying, rare diseases. Thus, continued research is required for moving toward a more complete catalog of disease-related genes and variants. The International Rare Diseases Research Consortium (IRDiRC) was established in 2011 to bring together researchers and organizations invested in rare disease research to develop a means of achieving molecular diagnosis for all rare diseases. Here, we review the current and future bottlenecks to gene discovery and suggest strategies for enabling progress in this regard. Each successful discovery will define potential diagnostic, preventive, and therapeutic opportunities for the corresponding rare disease, enabling precision medicine for this patient population.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: