Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

The TNF-family cytokine TL1A inhibits proliferation of human activated B cells.

  • Chiara Cavallini‎ et al.
  • PloS one‎
  • 2013‎

Death receptor (DR3) 3 is a member of the TNFR superfamily. Its ligand is TNF-like ligand 1A (TL1A), a member of the TNF superfamily. TL1A/DR3 interactions have been reported to modulate the functions of T cells, NK, and NKT cells and play a crucial role in driving inflammatory processes in several T-cell-dependent autoimmune diseases. However, TL1A expression and effects on B cells remain largely unknown. In this study, we described for the first time that B cells from human blood express significant amounts of DR3 in response to B cell receptor polyclonal stimulation. The relevance of these results has been confirmed by immunofluorescence analysis in tonsil and spleen tissue specimens, which showed the in situ expression of DR3 in antigen-stimulated B cells in vivo. Remarkably, we demonstrated that TL1A reduces B-cell proliferation induced by anti-IgM-antibodies and IL-2 but did not affect B-cell survival, suggesting that TL1A inhibits the signal(s) important for B-cell proliferation. These results revealed a novel function of TL1A in modulating B-cell proliferation in vitro and suggest that TL1A may contribute to homeostasis of effector B-cell functions in immune response and host defense, thus supporting the role of the TL1A/DR3 functional axis in modulating the adaptive immune response.


Novel stem/progenitor cells with neuronal differentiation potential reside in the leptomeningeal niche.

  • Francesco Bifari‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

Stem cells capable of generating neural differentiated cells are recognized by the expression of nestin and reside in specific regions of the brain, namely, hippocampus, subventricular zone and olfactory bulb. For other brain structures, such as leptomeninges, which contribute to the correct cortex development and functions, there is no evidence so far that they may contain stem/precursor cells. In this work, we show for the first time that nestin-positive cells are present in rat leptomeninges during development up to adulthood. The newly identified nestin-positive cells can be extracted and expanded in vitro both as neurospheres, displaying high similarity with subventricular zone-derived neural stem cells, and as homogeneous cell population with stem cell features. In vitro expanded stem cell population can differentiate with high efficiency into excitable cells with neuronal phenotype and morphology. Once injected into the adult brain, these cells survive and differentiate into neurons, thus showing that their neuronal differentiation potential is operational also in vivo. In conclusion, our data provide evidence that a specific population of immature cells endowed of neuronal differentiation potential is resident in the leptomeninges throughout the life. As leptomeninges cover the entire central nervous system, these findings could have relevant implications for studies on cortical development and for regenerative medicine applied to neurological disorders.


BID and the α-bisabolol-triggered cell death program: converging on mitochondria and lysosomes.

  • Antonella Rigo‎ et al.
  • Cell death & disease‎
  • 2019‎

α-Bisabolol (BSB) is a plant-derived sesquiterpene alcohol able to trigger regulated cell death in transformed cells, while deprived of the general toxicity in several mouse models. Here, we investigated the involvement of lysosomal and mitochondrial compartments in the cytotoxic effects of BSB, with a specific focus on the BH3-only activator protein BID. We found that BSB particularly accumulated in cancer cell lines, displaying a higher amount of lipid rafts as compared to normal blood cells. By means of western blotting and microscopy techniques, we documented rapid BSB-induced BID translocation to lysosomes and mitochondria, both of them becoming dysfunctional. Lysosomal membranes were permeabilized, thus blocking the cytoprotective autophagic flux and provoking cathepsin B leakage into the cytosol. Multiple flow cytometry-based experiments demonstrated the loss of mitochondrial membrane potential due to pore formation across the lipid bilayer. These parallel events converged on neoplastic cell death, an outcome significantly prevented by BID knockdown. Therefore, BSB promoted BID redistribution to the cell death executioner organelles, which in turn activated anti-autophagic and proapoptotic mechanisms. This is an example of how xenohormesis can be exploited to modulate basic cellular programs in cancer.


Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia.

  • Paul Takam Kamga‎ et al.
  • Oncotarget‎
  • 2016‎

Both preclinical and clinical investigations suggest that Notch signalling is critical for the development of many cancers and for their response to chemotherapy. We previously showed that Notch inhibition abrogates stromal-induced chemoresistance in lymphoid neoplasms. However, the role of Notch in acute myeloid leukemia (AML) and its contribution to the crosstalk between leukemia cells and bone marrow stromal cells remain controversial. Thus, we evaluated the role of the Notch pathway in the proliferation, survival and chemoresistance of AML cells in co-culture with bone marrow mesenchymal stromal cells expanded from both healthy donors (hBM-MSCs) and AML patients (hBM-MSCs*). As compared to hBM-MSCs, hBM-MSCs* showed higher level of Notch1, Jagged1 as well as the main Notch target gene HES1. Notably, hBM-MSCs* induced expression and activation of Notch signalling in AML cells, supporting AML proliferation and being more efficientin inducing AML chemoresistance than hBM-MSCs*. Pharmacological inhibition of Notch using combinations of Notch receptor-blocking antibodies or gamma-secretase inhibitors (GSIs), in presence of chemotherapeutic agents, significant lowered the supportive effect of hBM-MSCs and hBM-MSCs* towards AML cells, by activating apoptotic cascade and reducing protein level of STAT3, AKT and NF-κB.These results suggest that Notch signalling inhibition, by overcoming the stromal-mediated promotion of chemoresistance,may represent a potential therapeutic targetnot only for lymphoid neoplasms, but also for AML.


Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12.

  • Antonella Rigo‎ et al.
  • Molecular cancer‎
  • 2010‎

Increased numbers of tumour-associated macrophages correlate with shortened survival in some cancers. The molecular bases of this correlation are not thoroughly understood. Events triggered by CXCL12 may play a part, as CXCL12 drives the migration of both CXCR4-positive cancer cells and macrophages and may promote a molecular crosstalk between them.


CXCL12 and [N33A]CXCL12 in 5637 and HeLa cells: regulating HER1 phosphorylation via calmodulin/calcineurin.

  • Antonella Rigo‎ et al.
  • PloS one‎
  • 2012‎

In the human neoplastic cell lines 5637 and HeLa, recombinant CXCL12 elicited, as expected, downstream signals via both G-protein-dependent and β-arrestin-dependent pathways responsible for inducing a rapid and a late wave, respectively, of ERK1/2 phosphorylation. In contrast, the structural variant [N33A]CXCL12 triggered no β-arrestin-dependent phosphorylation of ERK1/2, and signaled via G protein-dependent pathways alone. Both CXCL12 and [N33A]CXCL12, however, generated signals that transinhibited HER1 phosphorylation via intracellular pathways. 1) Prestimulation of CXCR4/HER1-positive 5637 or HeLa cells with CXCL12 modified the HB-EGF-dependent activation of HER1 by delaying the peak phosphorylation of tyrosine 1068 or 1173. 2) Prestimulation with the synthetic variant [N33A]CXCL12, while preserving CXCR4-related chemotaxis and CXCR4 internalization, abolished HER1 phosphorylation. 3) In cells knockdown of β-arrestin 2, CXCL12 induced a full inhibition of HER1 like [N33A]CXCL12 in non-silenced cells. 4) HER1 phosphorylation was restored as usual by inhibiting PCK, calmodulin or calcineurin, whereas the inhibition of CaMKII had no discernable effect. We conclude that both recombinant CXCL12 and its structural variant [N33A]CXCL12 may transinhibit HER1 via G-proteins/calmodulin/calcineurin, but [N33A]CXCL12 does not activate β-arrestin-dependent ERK1/2 phosphorylation and retains a stronger inhibitory effect. Therefore, we demonstrated that CXCL12 may influence the magnitude and the persistence of signaling downstream of HER1 in turn involved in the proliferative potential of numerous epithelial cancer. In addition, we recognized that [N33A]CXCL12 activates preferentially G-protein-dependent pathways and is an inhibitor of HER1.


Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia.

  • Elisabetta Flex‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

Aberrant signal transduction contributes substantially to leukemogenesis. The Janus kinase 1 (JAK1) gene encodes a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival, and differentiation. We report that somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia (ALL). JAK1 mutations were more prevalent among adult subjects with the T cell precursor ALL, where they accounted for 18% of cases, and were associated with advanced age at diagnosis, poor response to therapy, and overall prognosis. All mutations were missense, and some were predicted to destabilize interdomain interactions controlling the activity of the kinase. Three mutations that were studied promoted JAK1 gain of function and conferred interleukin (IL)-3-independent growth in Ba/F3 cells and/or IL-9-independent resistance to dexamethasone-induced apoptosis in T cell lymphoma BW5147 cells. Such effects were associated with variably enhanced activation of multiple downstream signaling pathways. Leukemic cells with mutated JAK1 alleles shared a gene expression signature characterized by transcriptional up-regulation of genes positively controlled by JAK signaling. Our findings implicate dysregulated JAK1 function in ALL, particularly of T cell origin, and point to this kinase as a target for the development of novel antileukemic drugs.


JAK2 tyrosine kinase mediates integrin activation induced by CXCL12 in B-cell chronic lymphocytic leukemia.

  • Alessio Montresor‎ et al.
  • Oncotarget‎
  • 2015‎

Chemokines participate to B-cell chronic lymphocytic leukemia (B-CLL) pathogenesis by promoting cell adhesion and survival in bone marrow stromal niches and mediating cell dissemination to secondary lymphoid organs. In this study we investigated the role of JAK protein tyrosine kinases (PTK) in adhesion triggering by the CXC chemokine CXCL12 in normal versus CLL B-lymphocytes. We demonstrate that CXCL12 activates JAK2 in normal as well as CLL B-lymphocytes, with kinetics consistent with rapid adhesion triggering. By using complementary methodologies of signal transduction interference, we found that JAK2 mediates CXCL12-triggered activation of lymphocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) integrins. We also show that JAK2 mediates the activation of the small GTP-binding protein RhoA, in turn controlling LFA-1 affinity triggering by CXCL12. Importantly, comparative analysis of 41 B-CLL patients did not evidence JAK2 functional variability between subjects, thus suggesting that JAK2, differently from other signaling events involved in adhesion regulation in B-CLL, is a signaling molecule downstream to CXCR4 characterized by a conserved regulatory role. Our results reveal JAK2 as critical component of chemokine signaling in CLL B-lymphocytes and indicate JAK inhibition as a potentially useful new pharmacological approach to B-CLL treatment.


Epstein-Barr virus DNA load in chronic lymphocytic leukemia is an independent predictor of clinical course and survival.

  • Carlo Visco‎ et al.
  • Oncotarget‎
  • 2015‎

The relation between Epstein-Barr virus (EBV) DNA load and clinical course of patients with chronic lymphocytic leukemia (CLL) is unknown. We assessed EBV DNA load by quantitative PCR at CLL presentation in mononuclear cells (MNC) of 220 prospective patients that were enrolled and followed-up in two major Institutions. In 20 patients EBV DNA load was also assessed on plasma samples. Forty-one age-matched healthy subjects were tested for EBV DNA load on MNC. Findings were validated in an independent retrospective cohort of 112 patients with CLL. EBV DNA load was detectable in 59%, and high (≥2000 copies/µg DNA) in 19% of patients, but it was negative in plasma samples. EBV DNA load was significantly higher in CLL patients than in healthy subjects (P < .0001). No relation was found between high EBV load and clinical stage or biological variables, except for 11q deletion (P = .004), CD38 expression (P = .003), and NOTCH1 mutations (P = .05). High EBV load led to a 3.14-fold increase in the hazard ratio of death and to a shorter overall survival (OS; P = .001). Poor OS was attributable, at least in part, to shorter time-to-first-treatment (P = .0008), with no higher risk of Richter's transformation or second cancer. Multivariate analysis selected high levels of EBV load as independent predictor of OS after controlling for confounding clinical and biological variables. EBV DNA load at presentation is an independent predictor of OS in patients with CLL.


G-CSF-stimulated neutrophils are a prominent source of functional BLyS.

  • Patrizia Scapini‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

B lymphocyte stimulator (BLyS) is a novel member of the TNF ligand superfamily that is important in B cell maturation and survival. We demonstrate that human neutrophils, after incubation with G-CSF or, less efficiently, IFN gamma, express high levels of BLyS mRNA and release elevated amounts of biologically active BLyS. In contrast, surface expression of the membrane-bound BLyS was not detected in activated neutrophils. Indeed, in neutrophils, uniquely among other myeloid cells, soluble BLyS is processed intracellularly by a furin-type convertase. Worthy of note, the absolute capacity of G-CSF-stimulated neutrophils to release BLyS was similar to that of activated monocytes or dendritic cells, suggesting that neutrophils might represent an important source of BLyS. In this regard, we show that BLyS serum levels as well as neutrophil-associated BLyS are significantly enhanced after in vivo administration of G-CSF in patients. In addition, serum obtained from two of these patients induced a remarkable accumulation of neutrophil-associated BLyS in vitro. This effect was neutralized by anti-G-CSF antibodies, indicating that G-CSF, present in the serum, stimulated neutrophils to produce BLyS. Collectively, our findings suggest that neutrophils, through the production of BLyS, might play an unsuspected role in the regulation of B cell homeostasis.


VR09 cell line: an EBV-positive lymphoblastoid cell line with in vivo characteristics of diffuse large B cell lymphoma of activated B-cell type.

  • Ilaria Nichele‎ et al.
  • PloS one‎
  • 2012‎

small B-cell neoplasms can show plasmacytic differentiation and may potentially progress to aggressive lymphoma (DLBCL). Epstein-Barr virus (EBV) infection may cause the transformation of malignant cells in vitro.


Monocyte-to-macrophage switch reversibly impaired by Ibrutinib.

  • Isacco Ferrarini‎ et al.
  • Oncotarget‎
  • 2019‎

Ibrutinib is increasingly adopted for treating lymphoid malignancies. While growing amounts of data pile up about Ibrutinib mechanism of action on neoplastic B cells, little is known about its impact on other immune cells. Here we investigated the effect of Ibrutinib on monocyte/macrophage functions. (1) Ibrutinib treatment of purified human monocytes affected both chemoattractant-triggered inside-out as well as integrin-mediated outside-in signaling events, thus provoking defective adhesion and spreading on purified integrin ligands, respectively. (2) In in vitro cell-culture experiments, Ibrutinib promoted a differentiation shift of monocytes to fibrocyte-like cells, characterized by the acquisition of a typical elongated cell morphology. Importantly, this clear-cut shape transition also occurred upon culturing monocytes with sera derived from Ibrutinib-treated patients, thus clearly suggesting that the drug concentrations achievable in vivo can generate the phenotypic shift. (3) Ibrutinib-induced fibrocyte-like cells showed adhesion deficiency, altered phagocytic properties, and, with respect to macrophages, they acquired the capability of generating larger amounts of reactive oxygen species, possibly displaying different metabolic activities. Taken together, our results indicate that Ibrutinib has profound effects on the monocyte/macrophage immunobiology. They may finally shed some light about the biological ground of several Ibrutinib-related toxicities.


Efficient lysis of B-chronic lymphocytic leukemia cells by the plant-derived sesquiterpene alcohol α-bisabolol, a dual proapoptotic and antiautophagic agent.

  • Antonella Rigo‎ et al.
  • Oncotarget‎
  • 2018‎

The sesquiterpene α-bisabolol (α-BSB) is a cytotoxic agent against acute leukemia and chronic myeloid leukemia cells. Here the profile of α-BSB citotoxicity was evaluated ex vivo in primary mononuclear blood cells isolated from 45 untreated B-chronic lymphocytic leukemia (B-CLL) patients. We studied the effects of α-BSB by flow cytometric and western blotting techniques with the following findings: (1) α-BSB was an effective proapoptotic agent against B-CLL cells (IC50 42 ± 15 μM). It was also active, but to a lesser extent, on normal residual B cells and monocytes (IC50 68 ± 34 and 74 ± 28 μM, respectively; p < 0.01), while T-cells, though not achieving IC50, were nevertheless decreased. (2) Lipid raft content positively correlated with α-BSB cell sensitivity, while neither the phenotype of B-CLL cells nor the disease clinical stage did affect the sensitivity to α-BSB. (3) Flow cytometry analysis evidenced the induction of pores in mitochondrial and lysosomal membrane after 3- to 5-hour exposure of B-CLL cells to α-BSB, leading to apoptosis; in contrast, western blotting analysis showed inhibition of the autophagic flux. Therefore, according to cellular selectivity, α-BSB is a cytotoxic agent preferentially active against leukemic cells, while its lower activity on normal B cells, monocytes and T cells may account for an additive anti-inflammatory effect targeting the leukemia-associated pro-inflammatory microenvironment. Consistent with the observed effects on intracellular processes, α-BSB should be regarded as a dual agent, both activating mitochondrial-based apoptosis and inhibiting autophagy by disrupting lysosomes.


α-bisabolol is an effective proapoptotic agent against BCR-ABL(+) cells in synergism with Imatinib and Nilotinib.

  • Massimiliano Bonifacio‎ et al.
  • PloS one‎
  • 2012‎

We showed that α-bisabolol is active against primary acute leukemia cells, including BCR-ABL(+) acute lymphoblastic leukemias (ALL). Here we studied the activity of α-bisabolol against BCR-ABL(+) cells using 3 cell lines (K562, LAMA-84, CML-T1) and 10 primary BCR-ABL(+) ALL samples. We found that: (a) α-bisabolol was effective in reducing BCR-ABL(+) cell viabilty at concentrations ranging from 53 to 73 µM; (b) α-bisabolol concentrations in BCR-ABL(+) cellular compartments were 4- to 12-fold higher than in normal cells, thus indicating a preferential intake in neoplastic cells; (c) α-bisabolol displayed a slight to strong synergism with the Tyrosine Kinase Inhibitors (TKI) imatinib and nilotinib: the combination of α-bisabolol+imatinib allowed a dose reduction of each compound up to 7.2 and 9.4-fold respectively, while the combination of α-bisabolol+nilotinib up to 6.7 and 5-fold respectively; (d) α-bisabolol-induced apoptosis was associated with loss of plasma membrane integrity, irreversible opening of mitochondrial transition pore, disruption of mitochondrial potential, inhibition of oxygen consumption and increase of intracellular reactive oxygen species. These data indicate α-bisabolol as a candidate for treatment of BCR-ABL(+) leukemias to overcome resistance to TKI alone and to target leukemic cells through BCR-ABL-independent pathways.


CXCR4- and BCR-triggered integrin activation in B-cell chronic lymphocytic leukemia cells depends on JAK2-activated Bruton's tyrosine kinase.

  • Alessio Montresor‎ et al.
  • Oncotarget‎
  • 2018‎

Bruton's tyrosine kinase (BTK) regulates the B-cell receptor (BCR) signaling pathway, which, in turn, plays a critical role in B-cell chronic lymphocytic leukemia (B-CLL) pathogenesis. The BTK-specific inhibitor Ibrutinib blocks BCR signaling and is now approved as effective B-CLL therapy. Chemokines, such as the homeostatic chemokine CXCL12, play a central role in B-CLL pathogenesis and progression, by regulating CLL cell interaction with the stromal microenvironment, leading to cells survival and proliferation. In this study, we investigated, in normal versus CLL B-lymphocytes, the role of BTK in signal transduction activated by the CXCL12-CXCR4 signaling axis and its involvement in rapid integrin activation. We show that BTK is rapidly activated by CXCL12 in healthy as well as CLL B-lymphocytes, with a kinetic of tyr-phosphorylation coherent with rapid adhesion triggering. BTK inhibition prevents CXCL12-induced triggering of lymphocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) integrins. Furthermore, BTK inhibition blocks the activation of the small GTP-binding protein RhoA, controlling integrin affinity. Very importantly, we show that BTK tyr-phosphorylation and activation by CXCL12 depends on upstream activation of JAK2 tyrosine kinase. A comparative analysis of 36 B-CLL patients demonstrates that JAK2-dependent BTK regulatory role on integrin activation by CXCL12 is fully conserved in CLL cells. Finally, we show that the JAK2-BTK axis also regulates signaling to integrin activation by BCR. Thus, BTK and JAK protein tyrosine kinases (PTKs) manifest a hierarchical activity both in chemokine- as well as BCR-mediated integrin activation and dependent adhesion, potentially suggesting the possibility of combined therapeutic approaches to B-CLL treatment.


Expression and function of the TL1A/DR3 axis in chronic lymphocytic leukemia.

  • Chiara Cavallini‎ et al.
  • Oncotarget‎
  • 2015‎

TNF-like ligand 1A (TL1A) and its unique receptor death receptor 3 (DR3) acts as broad T-cell costimulator involved in regulatory mechanisms of adaptive immune response under physiological and pathological settings. Moreover, we have recently shown that TL1A negatively regulates B-cell proliferation. Despite increasing interest on the TL1A/DR3-axis functions, very little is known on its expression and role in leukemia. In this study, we investigated the expression and function of TL1A/DR3 axis in chronic lymphocytic leukemia (CLL). DR3 was differentially expressed in activated CLL cells and predominantly detected in patients with early clinical stage disease. Soluble TL1A has been revealed in the sera of CLL patients where higher TL1A levels were associated with early stage disease. T cells, monocytes and leukemic B cells have been identified as major sources of TL1A in CLL. The relevance of these findings has been sustained by functional data showing that exogenous TL1A reduces CLL proliferation induced by stimulation of the B cell receptor. Overall, these data document the expression of the TL1A/DR3 axis in early-stage CLL. They also identify a novel function for TL1A as a negative regulator of leukemic cell proliferation that may influence the CLL physiopathology and clinical outcome at an early-stage disease.


A single amino acid substitution in CXCL12 confers functional selectivity at the beta-arrestin level.

  • Antonella Rigo‎ et al.
  • Oncotarget‎
  • 2018‎

CXCL12/CXCR4 axis relies on both heterotrimeric Gi protein and β-arrestin coupling to trigger downstream responses. G protein activation allows for calcium flux, chemotaxis and early extracellular-signal regulated kinases 1/2 (ERK1/2) phosphorylation, whereas β-arrestin recruitment leads to late signaling, receptor desensitization and internalization. Together they may regulate the balance between transactivation and transinhibition of epithelial growth factor receptor 1 (HER1). Since we have previously noted significant differences between CXCL12 and its structural variant [N33A]CXCL12 in CXCR4 signaling, we sought to better characterize them by performing cAMP inhibition and β-arrestin recruitment assays, as well as functional tests that separately investigate G protein and β-arrestin-induced responses. [N33A]CXCL12 showed reduced potency both in Gαi coupling and β-arrestin recruitment as compared to the wild type chemokine, acting as an unbiased ligand. While these findings translated into reduced potency within Gαi-dependent functions, β-arrestin-dependent modules were affected in a more peculiar way. Unlike CXCL12, the mutant analogue did not restore HB-EGF-stimulated HER1 from CXCR4-induced transinhibition, and did not trigger the late wave of ERK1/2 phosphorylation. Instead, CXCR4 internalization was not impaired upon [N33A]CXCL12 stimulation. These differences highlight the novel opportunity to dissect CXCL12 signaling within the β-arrestin layer, in which the mutant chemokine clearly favors the internalization module over the other pathways. Such functional selectivity has an impact on HER1 activation status and may play a relevant part in the crosstalk between tyrosine kinase and seven transmembrane receptors.


CT imaging of primary pancreatic lymphoma: experience from three referral centres for pancreatic diseases.

  • Enrico Boninsegna‎ et al.
  • Insights into imaging‎
  • 2018‎

To describe CT characteristics of primary pancreatic lymphoma (PPL), a rare disease with features in common with adenocarcinoma.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: