Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Swine Influenza Virus (H1N2) Characterization and Transmission in Ferrets, Chile.

  • Nicolás Bravo-Vasquez‎ et al.
  • Emerging infectious diseases‎
  • 2017‎

Phylogenetic analysis of the influenza hemagglutinin gene (HA) has suggested that commercial pigs in Chile harbor unique human seasonal H1-like influenza viruses, but further information, including characterization of these viruses, was unavailable. We isolated influenza virus (H1N2) from a swine in a backyard production farm in Central Chile and demonstrated that the HA gene was identical to that in a previous report. Its HA and neuraminidase genes were most similar to human H1 and N2 viruses from the early 1990s and internal segments were similar to influenza A(H1N1)pdm09 virus. The virus replicated efficiently in vitro and in vivo and transmitted in ferrets by respiratory droplet. Antigenically, it was distinct from other swine viruses. Hemagglutination inhibition analysis suggested that antibody titers to the swine Chilean H1N2 virus were decreased in persons born after 1990. Further studies are needed to characterize the potential risk to humans, as well as the ecology of influenza in swine in South America.


Production of isoform-specific knockdown/knockout Madin-Darby canine kidney epithelial cells using CRISPR/Cas9.

  • James M Readler‎ et al.
  • MethodsX‎
  • 2020‎

CRISPR-Cas9 gene editing has made it possible to specifically edit genes in a myriad of target cells. Here, a method for isoform-specific editing and clonal selection in Madin-Darby canine kidney (MDCK) epithelial cells is described in detail. This approach was used to address a long-standing question in virology of how adenovirus enters polarized epithelia from the apical surface. Our method relies on selecting two sgRNA sequences, cloning them into a suitable fluorescently labeled Cas9 vector system, and subsequently transfecting our MDCK epithelium and selecting isoform-specific Coxsackievirus and adenovirus receptor knockout clones. Utilization of this method is readily applicable to many other genetic targets in epithelial cells.•Simultaneous utilization of an sgRNA upstream and an sgRNA downstream of a target sequence allows for deletion of the intervening sequence, including whole exons.•Sorting of cells positive for fluorescent marker gene expression enhances the identification of partial and biallelic gene knockout.•PCR screening allows relatively fast and efficient determination of isoform-specific deletion.


Equine-Like H3 Avian Influenza Viruses in Wild Birds, Chile.

  • Nicolas Bravo-Vasquez‎ et al.
  • Emerging infectious diseases‎
  • 2020‎

Since their discovery in the United States in 1963, outbreaks of infection with equine influenza virus (H3N8) have been associated with serious respiratory disease in horses worldwide. Genomic analysis suggests that equine H3 viruses are of an avian lineage, likely originating in wild birds. Equine-like internal genes have been identified in avian influenza viruses isolated from wild birds in the Southern Cone of South America. However, an equine-like H3 hemagglutinin has not been identified. We isolated 6 distinct H3 viruses from wild birds in Chile that have hemagglutinin, nucleoprotein, nonstructural protein 1, and polymerase acidic genes with high nucleotide homology to the 1963 H3N8 equine influenza virus lineage. Despite the nucleotide similarity, viruses from Chile were antigenically more closely related to avian viruses and transmitted effectively in chickens, suggesting adaptation to the avian host. These studies provide the initial demonstration that equine-like H3 hemagglutinin continues to circulate in a wild bird reservoir.


Infectious Norovirus Is Chronically Shed by Immunocompromised Pediatric Hosts.

  • Amy Davis‎ et al.
  • Viruses‎
  • 2020‎

Noroviruses are a leading cause of gastroenteritis worldwide. Although infections in healthy individuals are self-resolving, immunocompromised individuals are at risk for chronic disease and severe complications. Chronic norovirus infections in immunocompromised hosts are often characterized by long-term virus shedding, but it is unclear whether this shed virus remains infectious. We investigated the prevalence, genetic heterogeneity, and temporal aspects of norovirus infections in 1140 patients treated during a 6-year period at a pediatric research hospital. Additionally, we identified 20 patients with chronic infections lasting 37 to >418 days. Using a new human norovirus in vitro assay, we confirmed the continuous shedding of infectious virus for the first time. Shedding lasted longer in male patients and those with diarrheal symptoms. Prolonged shedding of infectious norovirus in immunocompromised hosts can potentially increase the likelihood of transmission, highlighting the importance of isolation precautions to prevent nosocomial infections.


Human Norovirus Triggers Primary B Cell Immune Activation In Vitro.

  • Carmen Mirabelli‎ et al.
  • mBio‎
  • 2022‎

Human norovirus (HNoV) is a global health and socioeconomic burden, estimated to infect every individual at least five times during their lifetime. The underlying mechanism for the potential lack of long-term immune protection from HNoV infections is not understood and prompted us to investigate HNoV susceptibility of primary human B cells and its functional impact. Primary B cells isolated from whole blood were infected with HNoV-positive stool samples and harvested at 3 days postinfection (dpi) to assess the viral RNA yield by reverse transcriptase quantitative PCR (RT-qPCR). A 3- to 18-fold increase in the HNoV RNA yield was observed in 50 to 60% of donors. Infection was further confirmed in B cells derived from splenic and lymph node biopsy specimens. Next, we characterized infection of whole-blood-derived B cells by flow cytometry in specific functional B cell subsets (naive CD27- IgD+, memory-switched CD27+ IgD-, memory-unswitched CD27+ IgD+, and double-negative CD27- IgD- cells). While the susceptibilities of the subsets were similar, changes in the B cell subset distribution upon infection were observed, which were also noted after treatment with HNoV virus-like particles and the predicted recombinant NS1 protein. Importantly, primary B cell stimulation with the predicted recombinant NS1 protein triggered B cell activation and induced metabolic changes. These data demonstrate that primary B cells are susceptible to HNoV infection and suggest that the NS1 protein can alter B cell activation and metabolism in vitro, which could have implications for viral pathogenesis and immune responses in vivo. IMPORTANCE Human norovirus (HNoV) is the most prevalent causative agent of gastroenteritis worldwide. Infection results in a self-limiting disease that can become chronic and severe in the immunocompromised, the elderly, and infants. There are currently no approved therapeutic and preventative strategies to limit the health and socioeconomic burdens associated with HNoV infections. Moreover, HNoV does not elicit lifelong immunity as repeat infections are common, presenting a challenge for vaccine development. Given the importance of B cells for humoral immunity, we investigated the susceptibility and impact of HNoV infection on human B cells. We found that HNoV replicates in human primary B cells derived from blood, spleen, and lymph node specimens, while the nonstructural protein NS1 can activate B cells. Because of the secreted nature of NS1, we put forward the hypothesis that HNoV infection can modulate bystander B cell function with potential impacts on systemic immune responses.


Remote Sensing and Ecological Variables Related to Influenza A Prevalence and Subtype Diversity in Wild Birds in the Lluta Wetland of Northern Chile.

  • Soledad Ruiz‎ et al.
  • Viruses‎
  • 2023‎

The Lluta River is the northernmost coastal wetland in Chile, representing a unique ecosystem and an important source of water in the extremely arid Atacama Desert. During peak season, the wetland is home to more than 150 species of wild birds and is the first stopover point for many migratory species that arrive in the country along the Pacific migratory route, thereby representing a priority site for avian influenza virus (AIV) surveillance in Chile. The aim of this study was to determine the prevalence of influenza A virus (IAV) in the Lluta River wetland, identify subtype diversity, and evaluate ecological and environmental factors that drive the prevalence at the study site. The wetland was studied and sampled from September 2015 to October 2020. In each visit, fresh fecal samples of wild birds were collected for IAV detection by real-time RT-PCR. Furthermore, a count of wild birds present at the site was performed and environmental variables, such as temperature, rainfall, vegetation coverage (Normalized Difference Vegetation Index-NDVI), and water body size were determined. A generalized linear mixed model (GLMM) was built to assess the association between AIV prevalence and explanatory variables. Influenza positive samples were sequenced, and the host species was determined by barcoding. Of the 4349 samples screened during the study period, overall prevalence in the wetland was 2.07% (95% CI: 1.68 to 2.55) and monthly prevalence of AIV ranged widely from 0% to 8.6%. Several hemagglutinin (HA) and neuraminidase (NA) subtypes were identified, and 10 viruses were isolated and sequenced, including low pathogenic H5, H7, and H9 strains. In addition, several reservoir species were recognized (both migratory and resident birds), including the newly identified host Chilean flamingo (Phoenicopterus chilensis). Regarding environmental variables, prevalence of AIV was positively associated with NDVI (OR = 3.65, p < 0.05) and with the abundance of migratory birds (OR = 3.57, p < 0.05). These results emphasize the importance of the Lluta wetland as a gateway to Chile for viruses that come from the Northern Hemisphere and contribute to the understanding of AIV ecological drivers.


Sidestream smoke exposure increases the susceptibility of airway epithelia to adenoviral infection.

  • Priyanka Sharma‎ et al.
  • PloS one‎
  • 2012‎

Although significant epidemiological evidence indicates that cigarette smoke exposure increases the incidence and severity of viral infection, the molecular mechanisms behind the increased susceptibility of the respiratory tract to viral pathogens are unclear. Adenoviruses are non-enveloped DNA viruses and important causative agents of acute respiratory disease. The Coxsackievirus and adenovirus receptor (CAR) is the primary receptor for many adenoviruses. We hypothesized that cigarette smoke exposure increases epithelial susceptibility to adenovirus infection by increasing the abundance of apical CAR.


Murine norovirus (MNV-1) exposure in vitro to the purine nucleoside analog Ribavirin increases quasispecies diversity.

  • Timothy R Julian‎ et al.
  • Virus research‎
  • 2016‎

Ribavirin is a pharmaceutical antiviral used for the treatment of RNA virus infections including norovirus, hepatitis C virus, hepatitis E virus, Lassa virus, respiratory syncytial virus, and rhinovirus. Despite the drug's history and documented efficacy, the antiviral mechanism of Ribavirin remains unclear. Mechanisms proposed include depletion of the intracellular GTP pool, immunomodulatory effects, induction of error catastrophe, inhibition of viral polymerase activity, and/or inhibition of viral capping. In the present study, we leveraged deep sequencing data to demonstrate that Ribavirin increases murine norovirus (MNV-1) viral diversity. By serial passaging MNV-1 in RAW 264.7 cells for twenty generations in the presence of Ribavirin, we demonstrated statistically significant increases in both the number of unique haplotypes and the average pairwise difference (APD). Based on statistically significant differences in the probability of nucleotide mutations based on Roche 454 sequencing, we also demonstrated that single nucleotide substitutions are increased in the presence of Ribavirin. Finally, we demonstrated Ribavirin's impact on statistically significantly reducing the relative proportion of the dominant sequence within the quasispecies.


Astrovirus replication in human intestinal enteroids reveals multi-cellular tropism and an intricate host innate immune landscape.

  • Abimbola O Kolawole‎ et al.
  • PLoS pathogens‎
  • 2019‎

Human astroviruses (HAstV) are understudied positive-strand RNA viruses that cause gastroenteritis mostly in children and the elderly. Three clades of astroviruses, classic, MLB-type and VA-type have been reported in humans. One limitation towards a better understanding of these viruses has been the lack of a physiologically relevant cell culture model that supports growth of all clades of HAstV. Herein, we demonstrate infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. A detailed investigation of infection of VA1, a member of the non-canonical HAstV-VA/HMO clade, showed robust replication in HIE derived from different patients and from different intestinal regions independent of the cellular differentiation status. Flow cytometry and immunofluorescence analysis revealed that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes, in HIE cultures. RNA profiling of VA1-infected HIE uncovered that the host response to infection is dominated by interferon (IFN)-mediated innate immune responses. A comparison of the antiviral host response in non-transformed HIE and transformed human colon carcinoma Caco-2 cells highlighted significant differences between these cells, including an increased magnitude of the response in HIE. Additional studies confirmed the sensitivity of VA1 to exogenous IFNs, and indicated that the endogenous IFN response of HIE to curtail the growth of strains from all three clades. Genotypic variation in the permissiveness of different HIE lines to HAstV could be overcome by pharmacologic inhibition of JAK/STAT signaling. Collectively, our data identify HIE as a universal infection model for HAstV and an improved model of the intestinal epithelium to investigate enteric virus-host interactions.


Transiently antigen primed B cells can generate multiple subsets of memory cells.

  • Jackson S Turner‎ et al.
  • PloS one‎
  • 2017‎

Memory B cells are long-lived cells that generate a more vigorous response upon recognition of antigen (Ag) and T cell help than naïve B cells and ensure maintenance of durable humoral immunity. Functionally distinct subsets of murine memory B cells have been identified based on isotype switching of BCRs and surface expression of the co-stimulatory molecule CD80 and co-inhibitory molecule PD-L2. Memory B cells in a subpopulation with low surface expression of CD80 and PD-L2 are predominantly non-isotype switched and can be efficiently recruited into germinal centers (GCs) in secondary responses. In contrast, a CD80 and PD-L2 positive subset arises predominantly from GCs and can quickly differentiate into antibody-secreting plasma cells (PCs). Here we demonstrate that single transient acquisition of Ag by B cells may be sufficient for their long-term participation in GC responses and for development of various memory B cell subsets including CD80 and PD-L2 positive effector-like memory cells that rapidly differentiate into class-switched PCs during recall responses.


Adenovirus Co-Opts Neutrophilic Inflammation to Enhance Transduction of Epithelial Cells.

  • James M Readler‎ et al.
  • Viruses‎
  • 2021‎

Human adenoviruses (HAdV) cause a variety of infections in human hosts, from self-limited upper respiratory tract infections in otherwise healthy people to fulminant pneumonia and death in immunocompromised patients. Many HAdV enter polarized epithelial cells by using the primary receptor, the Coxsackievirus and adenovirus receptor (CAR). Recently published data demonstrate that a potent neutrophil (PMN) chemoattractant, interleukin-8 (IL-8), stimulates airway epithelial cells to increase expression of the apical isoform of CAR (CAREx8), which results in increased epithelial HAdV type 5 (HAdV5) infection. However, the mechanism for PMN-enhanced epithelial HAdV5 transduction remains unclear. In this manuscript, the molecular mechanisms behind PMN mediated enhancement of epithelial HAdV5 transduction are characterized using an MDCK cell line that stably expresses human CAREx8 under a doxycycline inducible promoter (MDCK-CAREx8 cells). Contrary to our hypothesis, PMN exposure does not enhance HAdV5 entry by increasing CAREx8 expression nor through activation of non-specific epithelial endocytic pathways. Instead, PMN serine proteases are responsible for PMN-mediated enhancement of HAdV5 transduction in MDCK-CAREx8 cells. This is evidenced by reduced transduction upon inhibition of PMN serine proteases and increased transduction upon exposure to exogenous human neutrophil elastase (HNE). Furthermore, HNE exposure activates epithelial autophagic flux, which, even when triggered through other mechanisms, results in a similar enhancement of epithelial HAdV5 transduction. Inhibition of F-actin with cytochalasin D partially attenuates PMN mediated enhancement of HAdV transduction. Taken together, these findings suggest that HAdV5 can leverage innate immune responses to establish infections.


Mass spectrometric profiling of HLA-B44 peptidomes provides evidence for tapasin-mediated tryptophan editing.

  • Amanpreet Kaur‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Activation of CD8 + T cells against pathogens and cancers involves the recognition of antigenic peptides bound to human leukocyte antigen (HLA) class-I proteins. Peptide binding to HLA class I proteins is coordinated by a multi-protein complex called the peptide loading complex (PLC). Tapasin, a key PLC component, facilitates the binding and optimization of HLA class I peptides. However, different HLA class I allotypes have variable requirements for tapasin for their assembly and surface expression. HLA-B*44:02 and HLA-B*44:05, which differ only at residue 116 of their heavy chain sequences, fall at opposite ends of the tapasin-dependency spectrum. HLA-B*44:02 (D116) is highly tapasin-dependent, whereas HLA-B*44:05 (Y116) is highly tapasinindependent. Mass spectrometric comparisons of HLA-B*4405 and HLA-B*44:02 peptidomes were undertaken to better understand the influences of tapasin upon HLA-B44 peptidome compositions. Analyses of the HLA-B*44:05 peptidomes in the presence and absence of tapasin reveal that peptides with the C-terminal tryptophan residues and those with higher predicted binding affinities are selected in the presence of tapasin. Additionally, when tapasin is present, C-terminal tryptophans are also more highly represented among peptides unique to B*44:02 and those shared between B*44:02 and B*44:05, compared with peptides unique to B*44:05. Overall, our findings demonstrate that tapasin influences the C-terminal composition of HLA class I-bound peptides and favors the binding of higher affinity peptides. For the HLA-B44 family, the presence of tapasin or high tapasin-dependence of an allotype results in better binding of peptides with C-terminal tryptophans, consistent with a role for tapasin in stabilizing an open conformation to accommodate bulky C-terminal residues.


Norovirus Escape from Broadly Neutralizing Antibodies Is Limited to Allostery-Like Mechanisms.

  • Abimbola O Kolawole‎ et al.
  • mSphere‎
  • 2017‎

Ideal antiviral vaccines elicit antibodies (Abs) with broad strain recognition that bind to regions that are difficult to mutate for escape. Using 10 murine norovirus (MNV) strains and 5 human norovirus (HuNoV) virus-like particles (VLPs), we identified monoclonal antibody (MAb) 2D3, which broadly neutralized all MNV strains tested. Importantly, escape mutants corresponding to this antibody were very slow to develop and were distal to those raised against our previously studied antibody, A6.2. To understand the atomic details of 2D3 neutralization, we determined the cryo-electron microscopy (cryo-EM) structure of the 2D3/MNV1 complex. Interestingly, 2D3 binds to the top of the P domain, very close to where A6.2 binds, but the only escape mutations identified to date fall well outside the contact regions of both 2D3 and A6.2. To determine how mutations in distal residues could block antibody binding, we used molecular dynamics flexible fitting simulations of the atomic structures placed into the density map to examine the 2D3/MNV1 complex and these mutations. Our findings suggest that the escape mutant, V339I, may stabilize a salt bridge network at the P-domain dimer interface that, in an allostery-like manner, affects the conformational relaxation of the P domain and the efficiency of binding. They further highlight the unusual antigenic surface bound by MAb 2D3, one which elicits cross-reactive antibodies but which the virus is unable to alter to escape neutralization. These results may be leveraged to generate norovirus (NoV) vaccines containing broadly neutralizing antibodies. IMPORTANCE The simplest and most common way for viruses to escape antibody neutralization is by mutating residues that are essential for antibody binding. Escape mutations are strongly selected for by their effect on viral fitness, which is most often related to issues of protein folding, particle assembly, and capsid function. The studies presented here demonstrated that a broadly neutralizing antibody to mouse norovirus binds to an exposed surface but that the only escape mutants that arose were distal to the antibody binding surface. To understand this finding, we performed an in silico analysis that suggested that those escape mutations blocked antibody binding by affecting structural plasticity. This kind of antigenic region-one that gives rise to broadly neutralizing antibodies but that the virus finds difficult to escape from-is therefore ideal for vaccine development.


Utility of nasal swabs for assessing mucosal immune responses towards SARS-CoV-2.

  • Ericka Kirkpatrick Roubidoux‎ et al.
  • Scientific reports‎
  • 2023‎

SARS-CoV-2 has caused millions of infections worldwide since its emergence in 2019. Understanding how infection and vaccination induce mucosal immune responses and how they fluctuate over time is important, especially since they are key in preventing infection and reducing disease severity. We established a novel methodology for assessing SARS-CoV-2 cytokine and antibody responses at the nasal epithelium by using nasopharyngeal swabs collected longitudinally before and after either SARS-CoV-2 infection or vaccination. We then compared responses between mucosal and systemic compartments. We demonstrate that cytokine and antibody profiles differ between compartments. Nasal cytokines show a wound healing phenotype while plasma cytokines are consistent with pro-inflammatory pathways. We found that nasal IgA and IgG have different kinetics after infection, with IgA peaking first. Although vaccination results in low nasal IgA, IgG induction persists for up to 180 days post-vaccination. This research highlights the importance of studying mucosal responses in addition to systemic responses to respiratory infections. The methods described herein can be used to further mucosal vaccine development by giving us a better understanding of immunity at the nasal epithelium providing a simpler, alternative clinical practice to studying mucosal responses to infection.


Adenovirus entry from the apical surface of polarized epithelia is facilitated by the host innate immune response.

  • Poornima L N Kotha‎ et al.
  • PLoS pathogens‎
  • 2015‎

Prevention of viral-induced respiratory disease begins with an understanding of the factors that increase or decrease susceptibility to viral infection. The primary receptor for most adenoviruses is the coxsackievirus and adenovirus receptor (CAR), a cell-cell adhesion protein normally localized at the basolateral surface of polarized epithelia and involved in neutrophil transepithelial migration. Recently, an alternate isoform of CAR, CAREx8, has been identified at the apical surface of polarized airway epithelia and is implicated in viral infection from the apical surface. We hypothesized that the endogenous role of CAREx8 may be to facilitate host innate immunity. We show that IL-8, a proinflammatory cytokine and a neutrophil chemoattractant, stimulates the protein expression and apical localization of CAREx8 via activation of AKT/S6K and inhibition of GSK3β. Apical CAREx8 tethers infiltrating neutrophils at the apical surface of a polarized epithelium. Moreover, neutrophils present on the apical-epithelial surface enhance adenovirus entry into the epithelium. These findings suggest that adenovirus evolved to co-opt an innate immune response pathway that stimulates the expression of its primary receptor, apical CAREx8, to allow the initial infection the intact epithelium. In addition, CAREx8 is a new target for the development of novel therapeutics for both respiratory inflammatory disease and adenoviral infection.


Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning.

  • Trung H M Pham‎ et al.
  • The Journal of experimental medicine‎
  • 2010‎

Lymphocyte egress from lymph nodes (LNs) is dependent on sphingosine-1-phosphate (S1P), but the cellular source of this S1P is not defined. We generated mice that expressed Cre from the lymphatic vessel endothelial hyaluronan receptor 1 (Lyve-1) locus and that showed efficient recombination of loxP-flanked genes in lymphatic endothelium. We report that mice with Lyve-1 CRE-mediated ablation of sphingosine kinase (Sphk) 1 and lacking Sphk2 have a loss of S1P in lymph while maintaining normal plasma S1P. In Lyve-1 Cre+ Sphk-deficient mice, lymphocyte egress from LNs and Peyer's patches is blocked. Treatment with pertussis toxin to overcome Galphai-mediated retention signals restores lymphocyte egress. Furthermore, in the absence of lymphatic Sphks, the initial lymphatic vessels in nonlymphoid tissues show an irregular morphology and a less organized vascular endothelial cadherin distribution at cell-cell junctions. Our data provide evidence that lymphatic endothelial cells are an in vivo source of S1P required for lymphocyte egress from LNs and Peyer's patches, and suggest a role for S1P in lymphatic vessel maturation.


Non-Human Primates Harbor Diverse Mammalian and Avian Astroviruses Including Those Associated with Human Infections.

  • Erik A Karlsson‎ et al.
  • PLoS pathogens‎
  • 2015‎

Astroviruses (AstVs) are positive sense, single-stranded RNA viruses transmitted to a wide range of hosts via the fecal-oral route. The number of AstV-infected animal hosts has rapidly expanded in recent years with many more likely to be discovered because of the advances in viral surveillance and next generation sequencing. Yet no study to date has identified human AstV genotypes in animals, although diverse AstV genotypes similar to animal-origin viruses have been found in children with diarrhea and in one instance of encephalitis. Here we provide important new evidence that non-human primates (NHP) can harbor a wide variety of mammalian and avian AstV genotypes, including those only associated with human infection. Serological analyses confirmed that >25% of the NHP tested had antibodies to human AstVs. Further, we identified a recombinant AstV with parental relationships to known human AstVs. Phylogenetic analysis suggests AstVs in NHP are on average evolutionarily much closer to AstVs from other animals than are AstVs from bats, a frequently proposed reservoir. Our studies not only demonstrate that human astroviruses can be detected in NHP but also suggest that NHP are unique in their ability to support diverse AstV genotypes, further challenging the paradigm that astrovirus infection is species-specific.


Wild birds in Chile Harbor diverse avian influenza A viruses.

  • Pedro Jiménez-Bluhm‎ et al.
  • Emerging microbes & infections‎
  • 2018‎

While the circulation of avian influenza viruses (IAV) in wild birds in the northern hemisphere has been well documented, data from South America remain sparse. To address this gap in knowledge, we undertook IAV surveillance in wild birds in parts of Central and Northern Chile between 2012 and 2015. A wide diversity of hemagglutinin (HA) and neuraminidase (NA) subtypes were identified and 16 viruses were isolated including low pathogenic H5 and H7 strains, making this the largest and most diverse collection of Chilean avian IAVs to date. Unlike IAVs isolated from wild birds in other South American countries where the genes were most like viruses isolated from wild birds in either North America or South America, the Chilean viruses were reassortants containing genes like viruses isolated from both continents. In summary, our studies demonstrate that genetically diverse avian IAVs are circulating in wild birds in Chile highlighting the need for further investigation in this understudied area of the world.


Characterizing Emerging Canine H3 Influenza Viruses.

  • Luis Martinez-Sobrido‎ et al.
  • PLoS pathogens‎
  • 2020‎

The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned.


Visualizing B cell capture of cognate antigen from follicular dendritic cells.

  • Kazuhiro Suzuki‎ et al.
  • The Journal of experimental medicine‎
  • 2009‎

The prominent display of opsonized antigen by follicular dendritic cells (FDCs) has long favored the view that they serve as antigen-presenting cells for B cells. Surprisingly, however, although B cell capture of antigen from macrophages and dendritic cells has been visualized, acquisition from FDCs has not been directly observed. Using two-photon microscopy, we visualized B cell capture of cognate antigen from FDCs. B cell CXCR5 expression was required, and encounter with FDC-associated antigen could be detected for >1 wk after immunization. B cell-FDC contact times were often brief but occasionally persisted for >30 min, and B cells sometimes acquired antigen together with FDC surface proteins. These observations establish that FDCs can serve as sites of B cell antigen capture, with their prolonged display time ensuring that even rare B cells have the chance of antigen encounter, and they suggest possible information transfer from antigen-presenting cell to B cell.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: