Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 71 papers

Estrogen receptor-beta sensitizes breast cancer cells to the anti-estrogenic actions of endoxifen.

  • Xianglin Wu‎ et al.
  • Breast cancer research : BCR‎
  • 2011‎

We have previously demonstrated that endoxifen is the most important tamoxifen metabolite responsible for eliciting the anti-estrogenic effects of this drug in breast cancer cells expressing estrogen receptor-alpha (ERα). However, the relevance of ERβ in mediating endoxifen action has yet to be explored. Here, we characterize the molecular actions of endoxifen in breast cancer cells expressing ERβ and examine its effectiveness as an anti-estrogenic agent in these cell lines.


Prognostic characteristics in hormone receptor-positive advanced breast cancer and characterization of abemaciclib efficacy.

  • Angelo Di Leo‎ et al.
  • NPJ breast cancer‎
  • 2018‎

CDK4 & 6 inhibitors have enhanced the effectiveness of endocrine therapy (ET) in patients with advanced breast cancer (ABC). This paper presents exploratory analyses examining patient and disease characteristics that may inform in whom and when abemaciclib should be initiated. MONARCH 2 and 3 enrolled women with HR+, HER2- ABC. In MONARCH 2, patients whose disease had progressed while receiving ET were administered fulvestrant+abemaciclib/placebo. In MONARCH 3, patients received a nonsteroidal aromatase inhibitor+abemaciclib/placebo as initial therapy for advanced disease. A combined analysis of the two studies was performed to determine significant prognostic factors. Efficacy results (PFS and ORR in patients with measurable disease) were examined for patient subgroups corresponding to each significant prognostic factor. Analysis of clinical factors confirmed the following to have prognostic value: bone-only disease, liver metastases, tumor grade, progesterone receptor status, performance status, treatment-free interval (TFI) from the end of adjuvant ET, and time from diagnosis to recurrence. Prognosis was poorer in patients with liver metastases, progesterone receptor-negative tumors, high grade tumors, or short TFI (<36 months). Benefit (PFS hazard ratio, ORR increase) from abemaciclib was observed in all patient subgroups. Patients with indicators of poor prognosis had the largest benefit from the addition of abemaciclib. However, in MONARCH 3, for patients with certain good prognostic factors (TFI ≥ 36 months, bone-only disease) ET achieved a median PFS of >20 months. These analyses identified prognostic factors and demonstrated that patients with poor prognostic factors derived the largest benefit from the addition of abemaciclib.


TGF-β inducible early gene 1 regulates osteoclast differentiation and survival by mediating the NFATc1, AKT, and MEK/ERK signaling pathways.

  • Muzaffer Cicek‎ et al.
  • PloS one‎
  • 2011‎

TGF-β Inducible Early Gene-1 (TIEG1) is a Krüppel-like transcription factor (KLF10) that was originally cloned from human osteoblasts as an early response gene to TGF-β treatment. As reported previously, TIEG1(-/-) mice have decreased cortical bone thickness and vertebral bone volume and have increased spacing between the trabeculae in the femoral head relative to wildtype controls. Here, we have investigated the role of TIEG1 in osteoclasts to further determine their potential role in mediating this phenotype. We have found that TIEG1(-/-) osteoclast precursors differentiated more slowly compared to wildtype precursors in vitro and high RANKL doses are able to overcome this defect. We also discovered that TIEG1(-/-) precursors exhibit defective RANKL-induced phosphorylation and accumulation of NFATc1 and the NFATc1 target gene DC-STAMP. Higher RANKL concentrations reversed defective NFATc1 signaling and restored differentiation. After differentiation, wildtype osteoclasts underwent apoptosis more quickly than TIEG1(-/-) osteoclasts. We observed increased AKT and MEK/ERK signaling pathway activation in TIEG1(-/-) osteoclasts, consistent with the roles of these kinases in promoting osteoclast survival. Adenoviral delivery of TIEG1 (AdTIEG1) to TIEG1(-/-) cells reversed the RANKL-induced NFATc1 signaling defect in TIEG1(-/-) precursors and eliminated the differentiation and apoptosis defects. Suppression of TIEG1 with siRNA in wildtype cells reduced differentiation and NFATc1 activation. Together, these data provide evidence that TIEG1 controls osteoclast differentiation by reducing NFATc1 pathway activation and reduces osteoclast survival by suppressing AKT and MEK/ERK signaling.


Establishing and characterizing patient-derived xenografts using pre-chemotherapy percutaneous biopsy and post-chemotherapy surgical samples from a prospective neoadjuvant breast cancer study.

  • Jia Yu‎ et al.
  • Breast cancer research : BCR‎
  • 2017‎

Patient-derived xenografts (PDXs) are increasingly used in cancer research as a tool to inform cancer biology and drug response. Most available breast cancer PDXs have been generated in the metastatic setting. However, in the setting of operable breast cancer, PDX models both sensitive and resistant to chemotherapy are needed for drug development and prospective data are lacking regarding the clinical and molecular characteristics associated with PDX take rate in this setting.


Carnitine Palmitoyltransferase 1A Has a Lysine Succinyltransferase Activity.

  • Kiran Kurmi‎ et al.
  • Cell reports‎
  • 2018‎

Lysine succinylation was recently identified as a post-translational modification in cells. However, the molecular mechanism underlying lysine succinylation remains unclear. Here, we show that carnitine palmitoyltransferase 1A (CPT1A) has lysine succinyltransferase (LSTase) activity in vivo and in vitro. Using a stable isotope labeling by amino acid in cell culture (SILAC)-based proteomics approach, we found that 101 proteins were more succinylated in cells expressing wild-type (WT) CPT1A compared with vector control cells. One of the most heavily succinylated proteins in this analysis was enolase 1. We found that CPT1A WT succinylated enolase 1 and reduced enolase enzymatic activity in cells and in vitro. Importantly, mutation of CPT1A Gly710 (G710E) selectively inactivated carnitine palmitoyltransferase (CPTase) activity but not the LSTase activity that decreased enolase activity in cells and promoted cell proliferation under glutamine depletion. These findings suggest that CPT1A acts as an LSTase that can regulate enzymatic activity of a substrate protein and metabolism independent of its classical CPTase activity.


A comprehensive analysis of breast cancer microbiota and host gene expression.

  • Kevin J Thompson‎ et al.
  • PloS one‎
  • 2017‎

The inflammatory tumoral-immune response alters the physiology of the tumor microenvironment, which may attenuate genomic instability. In addition to inducing inflammatory immune responses, several pathogenic bacteria produce genotoxins. However the extent of microbial contribution to the tumor microenvironment biology remains unknown. We utilized The Cancer Genome Atlas, (TCGA) breast cancer data to perform a novel experiment utilizing unmapped and mapped RNA sequencing read evidence to minimize laboratory costs and effort. Our objective was to characterize the microbiota and associate the microbiota with the tumor expression profiles, for 668 breast tumor tissues and 72 non-cancerous adjacent tissues. The prominent presence of Proteobacteria was increased in the tumor tissues and conversely Actinobacteria abundance increase in non-cancerous adjacent tissues. Further, geneset enrichment suggests Listeria spp to be associated with the expression profiles of genes involved with epithelial to mesenchymal transitions. Moreover, evidence suggests H. influenza may reside in the surrounding stromal material and was significantly associated with the proliferative pathways: G2M checkpoint, E2F transcription factors, and mitotic spindle assembly. In summary, further unraveling this complicated interplay should enable us to better diagnose and treat breast cancer patients.


Tumor Sequencing and Patient-Derived Xenografts in the Neoadjuvant Treatment of Breast Cancer.

  • Matthew P Goetz‎ et al.
  • Journal of the National Cancer Institute‎
  • 2017‎

Breast cancer patients with residual disease after neoadjuvant chemotherapy (NAC) have increased recurrence risk. Molecular characterization, knowledge of NAC response, and simultaneous generation of patient-derived xenografts (PDXs) may accelerate drug development. However, the feasibility of this approach is unknown.


Pharmacological Targeting of Androgen Receptor Elicits Context-Specific Effects in Estrogen Receptor-Positive Breast Cancer.

  • Lixuan Wei‎ et al.
  • Cancer research‎
  • 2023‎

Androgen receptor (AR) is expressed in 80% to 90% of estrogen receptor α-positive (ER+) breast cancers. Accumulated evidence has shown that AR is a tumor suppressor and that its expression is associated with improved prognosis in ER+ breast cancer. However, both a selective AR agonist (RAD140) and an AR inhibitor (enzalutamide, ENZ) have shown a therapeutic effect on ER+ breast cancer, so the potential for clinical application of AR-targeting therapy for ER+ breast cancer is still in dispute. In this study, we evaluated the efficacy of ENZ and RAD140 in vivo and in vitro in AR+/ER+ breast cancer models, characterizing the relationship of AR and ER levels to response to AR-targeting drugs and investigating the alterations of global gene expression and chromatin binding of AR and ERα after ENZ treatment. In the AR-low setting, ENZ directly functioned as an ERα antagonist. Cell growth inhibition by ENZ in breast cancer with low AR expression was independent of AR and instead dependent on ER. In AR-high breast cancer models, AR repressed ERα signaling and ENZ promoted ERα signaling by antagonizing AR. In contrast, RAD140 activated AR signaling and suppressed AR-high tumor growth by deregulating ERα expression and blocking ERα function. Overall, analysis of the dynamic efficacies and outcomes of AR agonist, and antagonist in the presence of different AR and ERα levels reveals regulators of response and supports the clinical investigation of ENZ in selected ER+ tumors with a low AR/ER ratio and AR agonists in tumors with a high AR/ER ratio.


Serum and Soleus Metabolomics Signature of Klf10 Knockout Mice to Identify Potential Biomarkers.

  • Nadine Baroukh‎ et al.
  • Metabolites‎
  • 2022‎

The transcription factor Krüppel-like factor 10 (Klf10), also known as Tieg1 for TGFβ (Inducible Early Gene-1) is known to control numerous genes in many cell types that are involved in various key biological processes (differentiation, proliferation, apoptosis, inflammation), including cell metabolism and human disease. In skeletal muscle, particularly in the soleus, deletion of the Klf10 gene (Klf10 KO) resulted in ultrastructure fiber disorganization and mitochondrial metabolism deficiencies, characterized by muscular hypertrophy. To determine the metabolic profile related to loss of Klf10 expression, we analyzed blood and soleus tissue using UHPLC-Mass Spectrometry. Metabolomics analyses on both serum and soleus revealed profound differences between wild-type (WT) and KO animals. Klf10 deficient mice exhibited alterations in metabolites associated with energetic metabolism. Additionally, chemical classes of aromatic and amino-acid compounds were disrupted, together with Krebs cycle intermediates, lipids and phospholipids. From variable importance in projection (VIP) analyses, the Warburg effect, citric acid cycle, gluconeogenesis and transfer of acetyl groups into mitochondria appeared to be possible pathways involved in the metabolic alterations observed in Klf10 KO mice. These studies have revealed essential roles for Klf10 in regulating multiple metabolic pathways whose alterations may underlie the observed skeletal muscle defects as well as other diseases.


Identification of Src Family Kinases as Potential Therapeutic Targets for Chemotherapy-Resistant Triple Negative Breast Cancer.

  • Ishwar N Kohale‎ et al.
  • Cancers‎
  • 2022‎

Neoadjuvant chemotherapy (NAC) remains the cornerstone of the treatment for triple negative breast cancer (TNBC), with the goal of complete eradication of disease. However, for patients with residual disease after NAC, recurrence and mortality rates are high and the identification of novel therapeutic targets is urgently needed. We quantified tyrosine phosphorylation (pTyr)-mediated signaling networks in chemotherapy sensitive (CS) and resistant (CR) TNBC patient-derived xenografts (PDX), to gain novel therapeutic insights. The antitumor activity of SFK inhibition was examined in vivo. Treated tumors were further subjected to phosphoproteomic and RNAseq analysis, to identify the mechanism of actions of the drug. We identified Src Family Kinases (SFKs) as potential therapeutic targets in CR TNBC PDXs. Treatment with dasatinib, an FDA approved SFK inhibitor, led to inhibition of tumor growth in vivo. Further analysis of post-treatment PDXs revealed multiple mechanisms of actions of the drug, confirming the multi-target inhibition of dasatinib. Analysis of pTyr in tumor specimens suggested a low prevalence of SFK-driven tumors, which may provide insight into prior clinical trial results demonstrating a lack of dasatinib antitumor activity in unselected breast cancer patients. Taken together, these results underscore the importance of pTyr characterization of tumors, in identifying new targets, as well as stratifying patients based on their activated signaling networks for therapeutic options. Our data provide a strong rationale for studying SFK inhibitors in biomarker-selected SFK-driven TNBC.


Phase 1 study of Z-endoxifen in patients with advanced gynecologic, desmoid, and hormone receptor-positive solid tumors.

  • Naoko Takebe‎ et al.
  • Oncotarget‎
  • 2021‎

Differential responses to tamoxifen may be due to inter-patient variability in tamoxifen metabolism into pharmacologically active Z-endoxifen. Z-endoxifen administration was anticipated to bypass these variations, increasing active drug levels, and potentially benefitting patients responding sub-optimally to tamoxifen.


Health benefits attributed to 17α-estradiol, a lifespan-extending compound, are mediated through estrogen receptor α.

  • Shivani N Mann‎ et al.
  • eLife‎
  • 2020‎

Metabolic dysfunction underlies several chronic diseases, many of which are exacerbated by obesity. Dietary interventions can reverse metabolic declines and slow aging, although compliance issues remain paramount. 17α-estradiol treatment improves metabolic parameters and slows aging in male mice. The mechanisms by which 17α-estradiol elicits these benefits remain unresolved. Herein, we show that 17α-estradiol elicits similar genomic binding and transcriptional activation through estrogen receptor α (ERα) to that of 17β-estradiol. In addition, we show that the ablation of ERα completely attenuates the beneficial metabolic effects of 17α-E2 in male mice. Our findings suggest that 17α-E2 may act through the liver and hypothalamus to improve metabolic parameters in male mice. Lastly, we also determined that 17α-E2 improves metabolic parameters in male rats, thereby proving that the beneficial effects of 17α-E2 are not limited to mice. Collectively, these studies suggest ERα may be a drug target for mitigating chronic diseases in male mammals.


Landscape of baseline and acquired genomic alterations in circulating tumor DNA with abemaciclib alone or with endocrine therapy in advanced breast cancer.

  • Matthew P Goetz‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2023‎

To identify potential predictors of response and resistance mechanisms in patients with hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (ABC) treated with the CDK4/6 inhibitor abemaciclib +/- endocrine therapy (ET), baseline and acquired genomic alterations in circulating tumor DNA (ctDNA) were analyzed and associated with clinical outcomes.


Silencing of HSulf-2 expression in MCF10DCIS.com cells attenuate ductal carcinoma in situ progression to invasive ductal carcinoma in vivo.

  • Ashwani Khurana‎ et al.
  • Breast cancer research : BCR‎
  • 2012‎

Ductal carcinoma in situ (DCIS) of the breast is a heterogeneous group of proliferative cellular lesions that have the potential to become invasive. Very little is known about the molecular alterations involved in the progression from DCIS to invasive ductal carcinoma (IDC). Heparan endosulfatase (HSulf-2) edits sulfate moieties on heparan sulfate proteoglycans (HSPGs) and has been implicated in modulating heparin binding growth factor signaling, angiogenesis and tumorigenesis. However, the role of HSulf-2 in breast cancer progression is poorly understood. MCF10DCIS.com cells (referred as MCF10DCIS) express HSulf-2 and form comedo type DCIS and progress to IDC when transplanted in immune-deficient mice and, therefore, is an ideal model to study breast cancer progression. We evaluated the role of HSulf-2 in progression from DCIS to IDC using mouse fat pad mammary xenografts.


Two novel VHL targets, TGFBI (BIGH3) and its transactivator KLF10, are up-regulated in renal clear cell carcinoma and other tumors.

  • Sergey V Ivanov‎ et al.
  • Biochemical and biophysical research communications‎
  • 2008‎

Mutations in the VHL gene are associated with highly vascular tumors of kidney, brain, retina, and adrenal gland. The inability of the mutant VHL protein to destabilize HIF-1 plays a crucial role in malignant angiogenesis. VHL is also associated with ECM assembly but the molecular mechanisms of this activity remain unclear. We used expression arrays and cell lines with different VHL status to identify ECM-associated genes controlled by VHL. One of them, adhesion-associated TGFBI, was repressed by VHL and overexpressed in renal, gastrointestinal, brain, and other tumors. Analyzing the mechanism of TGFBI up-regulation in clear cell carcinoma, we identified a novel VHL target, a Kruppel-like transcriptional factor 10 (KLF10). The TGFBI promoter, which we isolated and studied in Luc-reporter assay, was induced by KLF10 but not hypoxia. These data provide the molecular basis for the observed VHL effect on TGFBI and stimulate further research into the KLF10 and TGFBI roles in cancer.


KLF10 Mediated Epigenetic Dysregulation of Epithelial CD40/CD154 Promotes Endometriosis.

  • Abigail A Delaney‎ et al.
  • Biology of reproduction‎
  • 2016‎

Endometriosis is a highly prevalent, chronic, heterogeneous, fibro-inflammatory disease that remains recalcitrant to conventional therapy. We previously showed that loss of KLF11, a transcription factor implicated in uterine disease, results in progression of endometriosis. Despite extensive homology, co-expression, and human disease association, loss of the paralog Klf10 causes a unique inflammatory, cystic endometriosis phenotype in contrast to fibrotic progression seen with loss of Klf11. We identify here for the first time a novel role for KLF10 in endometriosis. In an animal endometriosis model, unlike wild-type controls, Klf10(-/-) animals developed cystic lesions with massive immune infiltrate and minimal peri-lesional fibrosis. The Klf10(-/-) disease progression phenotype also contrasted with prolific fibrosis and minimal immune cell infiltration seen in Klf11(-/-) animals. We further found that lesion genotype rather than that of the host determined each unique disease progression phenotype. Mechanistically, KLF10 regulated CD40/CD154-mediated immune pathways. Both inflammatory as well as fibrotic phenotypes are the commonest clinical manifestations in chronic fibro-inflammatory diseases such as endometriosis. The complementary, paralogous Klf10 and Klf11 models therefore offer novel insights into the mechanisms of inflammation and fibrosis in a disease-relevant context. Our data suggests that divergence in underlying gene dysregulation critically determines disease-phenotype predominance rather than the conventional paradigm of inflammation being precedent to fibrotic scarring. Heterogeneity in clinical progression and treatment response are thus likely from disparate gene regulation profiles. Characterization of disease phenotype-associated gene dysregulation offers novel approaches for developing targeted, individualized therapy for recurrent and recalcitrant chronic disease.


Spontaneous murine tumors in the development of patient-derived xenografts: a potential pitfall.

  • Ann M Moyer‎ et al.
  • Oncotarget‎
  • 2019‎

Patient-derived xenografts (PDX) are generated in immune deficient mice and demonstrate histologic and molecular features similar to their corresponding human tumors. However, murine tumors (non-human) spontaneously occur in these models. 120 consecutive patients with high-risk primary breast cancer enrolled in the prospective neoadjuvant BEAUTY study had tumor tissue obtained at the time of diagnosis. These tumor cells, including initial tissue and subsequent generations, were injected into either NSG (n = 365) or NOD-SCID (n = 396) female mice. Mice with initial tumor growth sufficient for transfer to the 2nd generation underwent histologic review by pathologists, including Ki67 staining. After passaging the tumors for up to 4 generations, at least one primary mouse tumor was detected from 24 of the 54 PDX-lines, for a frequency of 3.2% (24 mice out of 761 mice), including murine lymphomas (n = 13), mammary tumors (n = 7), osteosarcomas (n = 2), and hemangiosarcomas (n = 2). While true PDX showed scattered strong staining with Ki67, murine tumors were Ki67 negative. No significant differences (p = 0.062) were observed comparing development of murine tumors in NOD-SCID (n = 8) vs NSG mice (n = 16). While PDX are a useful tool in cancer research, there is a potential for spontaneous murine tumors to arise, which could alter results of studies utilizing PDX. Morphologic review by a pathologist, potentially along with Ki67 staining, is necessary to ensure that tumor growth represents the desired PDX prior to use in downstream studies. This study is the first prospective study evaluating the frequency, type, and time frame for development of non-human tumors.


Pharmacogenomics of aromatase inhibitors in postmenopausal breast cancer and additional mechanisms of anastrozole action.

  • Junmei Cairns‎ et al.
  • JCI insight‎
  • 2020‎

Aromatase inhibitors (AIs) reduce breast cancer recurrence and prolong survival, but up to 30% of patients exhibit recurrence. Using a genome-wide association study of patients entered on MA.27, a phase III randomized trial of anastrozole versus exemestane, we identified a single nucleotide polymorphism (SNP) in CUB And Sushi multiple domains 1 (CSMD1) associated with breast cancer-free interval, with the variant allele associated with fewer distant recurrences. Mechanistically, CSMD1 regulates CYP19 expression in an SNP- and drug-dependent fashion, and this regulation is different among 3 AIs: anastrozole, exemestane, and letrozole. Overexpression of CSMD1 sensitized AI-resistant cells to anastrozole but not to the other 2 AIs. The SNP in CSMD1 that was associated with increased CSMD1 and CYP19 expression levels increased anastrozole sensitivity, but not letrozole or exemestane sensitivity. Anastrozole degrades estrogen receptor α (ERα), especially in the presence of estradiol (E2). ER+ breast cancer organoids and AI- or fulvestrant-resistant breast cancer cells were more sensitive to anastrozole plus E2 than to AI alone. Our findings suggest that the CSMD1 SNP might help to predict AI response, and anastrozole plus E2 serves as a potential new therapeutic strategy for patients with AI- or fulvestrant-resistant breast cancers.


Quantitative Analysis of Tyrosine Phosphorylation from FFPE Tissues Reveals Patient-Specific Signaling Networks.

  • Ishwar N Kohale‎ et al.
  • Cancer research‎
  • 2021‎

Human tissue samples commonly preserved as formalin-fixed paraffin-embedded (FFPE) tissues after diagnostic or surgical procedures in the clinic represent an invaluable source of clinical specimens for in-depth characterization of signaling networks to assess therapeutic options. Tyrosine phosphorylation (pTyr) plays a fundamental role in cellular processes and is commonly dysregulated in cancer but has not been studied to date in FFPE samples. In addition, pTyr analysis that may otherwise inform therapeutic interventions for patients has been limited by the requirement for large amounts of frozen tissue. Here we describe a method for highly sensitive, quantitative analysis of pTyr signaling networks, with hundreds of sites quantified from one to two 10-μm sections of FFPE tissue specimens. A combination of optimized magnetic bead-based sample processing, optimized pTyr enrichment strategies, and tandem mass tag multiplexing enabled in-depth coverage of pTyr signaling networks from small amounts of input material. Phosphotyrosine profiles of flash-frozen and FFPE tissues derived from the same tumors suggested that FFPE tissues preserve pTyr signaling characteristics in patient-derived xenografts and archived clinical specimens. pTyr analysis of FFPE tissue sections from breast cancer tumors as well as lung cancer tumors highlighted patient-specific oncogenic driving kinases, indicating potential targeted therapies for each patient. These data suggest the capability for direct translational insight from pTyr analysis of small amounts of FFPE tumor tissue specimens. SIGNIFICANCE: This study reports a highly sensitive method utilizing FFPE tissues to identify dysregulated signaling networks in patient tumors, opening the door for direct translational insights from FFPE tumor tissue banks in hospitals.


Estrogen receptor beta repurposes EZH2 to suppress oncogenic NFκB/p65 signaling in triple negative breast cancer.

  • Kirsten G M Aspros‎ et al.
  • NPJ breast cancer‎
  • 2022‎

Triple Negative Breast Cancer (TNBC) accounts for 15-20% of all breast cancer cases, yet is responsible for a disproportionately high percentage of breast cancer mortalities. Thus, there is an urgent need to identify novel biomarkers and therapeutic targets based on the molecular events driving TNBC pathobiology. Estrogen receptor beta (ERβ) is known to elicit anti-cancer effects in TNBC, however its mechanisms of action remain elusive. Here, we report the expression profiles of ERβ and its association with clinicopathological features and patient outcomes in the largest cohort of TNBC to date. In this cohort, ERβ was expressed in approximately 18% of TNBCs, and expression of ERβ was associated with favorable clinicopathological features, but correlated with different overall survival outcomes according to menopausal status. Mechanistically, ERβ formed a co-repressor complex involving enhancer of zeste homologue 2/polycomb repressive complex 2 (EZH2/PRC2) that functioned to suppress oncogenic NFκB/RELA (p65) activity. Importantly, p65 was shown to be required for formation of this complex and for ERβ-mediated suppression of TNBC. Our findings indicate that ERβ+ tumors exhibit different characteristics compared to ERβ- tumors and demonstrate that ERβ functions as a molecular switch for EZH2, repurposing it for tumor suppressive activities and repression of oncogenic p65 signaling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: