Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

Estrogen receptor-beta sensitizes breast cancer cells to the anti-estrogenic actions of endoxifen.

  • Xianglin Wu‎ et al.
  • Breast cancer research : BCR‎
  • 2011‎

We have previously demonstrated that endoxifen is the most important tamoxifen metabolite responsible for eliciting the anti-estrogenic effects of this drug in breast cancer cells expressing estrogen receptor-alpha (ERα). However, the relevance of ERβ in mediating endoxifen action has yet to be explored. Here, we characterize the molecular actions of endoxifen in breast cancer cells expressing ERβ and examine its effectiveness as an anti-estrogenic agent in these cell lines.


Quantification of Etoposide Hypersensitivity: A Sensitive, Functional Method for Assessing Pluripotent Stem Cell Quality.

  • Frank J Secreto‎ et al.
  • Stem cells translational medicine‎
  • 2017‎

Human induced pluripotent stem cells (hiPSC) hold great promise in diagnostic and therapeutic applications. However, translation of hiPSC technology depends upon a means of assessing hiPSC quality that is quantitative, high-throughput, and can decipher malignant teratocarcinoma clones from normal cell lines. These attributes are lacking in current approaches such as detection of cell surface makers, RNA profiling, and/or teratoma formation assays. The latter remains the gold standard for assessing clone quality in hiPSCs, but is expensive, time-consuming, and incompatible with high-throughput platforms. Herein, we describe a novel method for determining hiPSC quality that exploits pluripotent cells' documented hypersensitivity to the topoisomerase inhibitor etoposide (CAS No. 33419-42-0). Based on a study of 115 unique hiPSC clones, we established that a half maximal effective concentration (EC50) value of <300 nM following 24 hours of exposure to etoposide demonstrated a positive correlation with RNA profiles and colony morphology metrics associated with high quality hiPSC clones. Moreover, our etoposide sensitivity assay (ESA) detected differences associated with culture maintenance, and successfully distinguished malignant from normal pluripotent clones independent of cellular morphology. Overall, the ESA provides a simple, straightforward method to establish hiPSC quality in a quantitative and functional assay capable of being incorporated into a generalized method for establishing a quality control standard for all types of pluripotent stem cells. Stem Cells Translational Medicine 2017;6:1829-1839.


TGF-β inducible early gene 1 regulates osteoclast differentiation and survival by mediating the NFATc1, AKT, and MEK/ERK signaling pathways.

  • Muzaffer Cicek‎ et al.
  • PloS one‎
  • 2011‎

TGF-β Inducible Early Gene-1 (TIEG1) is a Krüppel-like transcription factor (KLF10) that was originally cloned from human osteoblasts as an early response gene to TGF-β treatment. As reported previously, TIEG1(-/-) mice have decreased cortical bone thickness and vertebral bone volume and have increased spacing between the trabeculae in the femoral head relative to wildtype controls. Here, we have investigated the role of TIEG1 in osteoclasts to further determine their potential role in mediating this phenotype. We have found that TIEG1(-/-) osteoclast precursors differentiated more slowly compared to wildtype precursors in vitro and high RANKL doses are able to overcome this defect. We also discovered that TIEG1(-/-) precursors exhibit defective RANKL-induced phosphorylation and accumulation of NFATc1 and the NFATc1 target gene DC-STAMP. Higher RANKL concentrations reversed defective NFATc1 signaling and restored differentiation. After differentiation, wildtype osteoclasts underwent apoptosis more quickly than TIEG1(-/-) osteoclasts. We observed increased AKT and MEK/ERK signaling pathway activation in TIEG1(-/-) osteoclasts, consistent with the roles of these kinases in promoting osteoclast survival. Adenoviral delivery of TIEG1 (AdTIEG1) to TIEG1(-/-) cells reversed the RANKL-induced NFATc1 signaling defect in TIEG1(-/-) precursors and eliminated the differentiation and apoptosis defects. Suppression of TIEG1 with siRNA in wildtype cells reduced differentiation and NFATc1 activation. Together, these data provide evidence that TIEG1 controls osteoclast differentiation by reducing NFATc1 pathway activation and reduces osteoclast survival by suppressing AKT and MEK/ERK signaling.


Serum and Soleus Metabolomics Signature of Klf10 Knockout Mice to Identify Potential Biomarkers.

  • Nadine Baroukh‎ et al.
  • Metabolites‎
  • 2022‎

The transcription factor Krüppel-like factor 10 (Klf10), also known as Tieg1 for TGFβ (Inducible Early Gene-1) is known to control numerous genes in many cell types that are involved in various key biological processes (differentiation, proliferation, apoptosis, inflammation), including cell metabolism and human disease. In skeletal muscle, particularly in the soleus, deletion of the Klf10 gene (Klf10 KO) resulted in ultrastructure fiber disorganization and mitochondrial metabolism deficiencies, characterized by muscular hypertrophy. To determine the metabolic profile related to loss of Klf10 expression, we analyzed blood and soleus tissue using UHPLC-Mass Spectrometry. Metabolomics analyses on both serum and soleus revealed profound differences between wild-type (WT) and KO animals. Klf10 deficient mice exhibited alterations in metabolites associated with energetic metabolism. Additionally, chemical classes of aromatic and amino-acid compounds were disrupted, together with Krebs cycle intermediates, lipids and phospholipids. From variable importance in projection (VIP) analyses, the Warburg effect, citric acid cycle, gluconeogenesis and transfer of acetyl groups into mitochondria appeared to be possible pathways involved in the metabolic alterations observed in Klf10 KO mice. These studies have revealed essential roles for Klf10 in regulating multiple metabolic pathways whose alterations may underlie the observed skeletal muscle defects as well as other diseases.


Health benefits attributed to 17α-estradiol, a lifespan-extending compound, are mediated through estrogen receptor α.

  • Shivani N Mann‎ et al.
  • eLife‎
  • 2020‎

Metabolic dysfunction underlies several chronic diseases, many of which are exacerbated by obesity. Dietary interventions can reverse metabolic declines and slow aging, although compliance issues remain paramount. 17α-estradiol treatment improves metabolic parameters and slows aging in male mice. The mechanisms by which 17α-estradiol elicits these benefits remain unresolved. Herein, we show that 17α-estradiol elicits similar genomic binding and transcriptional activation through estrogen receptor α (ERα) to that of 17β-estradiol. In addition, we show that the ablation of ERα completely attenuates the beneficial metabolic effects of 17α-E2 in male mice. Our findings suggest that 17α-E2 may act through the liver and hypothalamus to improve metabolic parameters in male mice. Lastly, we also determined that 17α-E2 improves metabolic parameters in male rats, thereby proving that the beneficial effects of 17α-E2 are not limited to mice. Collectively, these studies suggest ERα may be a drug target for mitigating chronic diseases in male mammals.


A lncRNA from the FTO locus acts as a suppressor of the m6A writer complex and p53 tumor suppression signaling.

  • Jianong Zhang‎ et al.
  • Molecular cell‎
  • 2023‎

N6-methyladenosine (m6A) of mRNAs modulated by the METTL3-METTL14-WTAP-RBM15 methyltransferase complex and m6A demethylases such as FTO play important roles in regulating mRNA stability, splicing, and translation. Here, we demonstrate that FTO-IT1 long noncoding RNA (lncRNA) was upregulated and positively correlated with poor survival of patients with wild-type p53-expressing prostate cancer (PCa). m6A RIP-seq analysis revealed that FTO-IT1 knockout increased mRNA m6A methylation of a subset of p53 transcriptional target genes (e.g., FAS, TP53INP1, and SESN2) and induced PCa cell cycle arrest and apoptosis. We further showed that FTO-IT1 directly binds RBM15 and inhibits RBM15 binding, m6A methylation, and stability of p53 target mRNAs. Therapeutic depletion of FTO-IT1 restored mRNA m6A level and expression of p53 target genes and inhibited PCa growth in mice. Our study identifies FTO-IT1 lncRNA as a bona fide suppressor of the m6A methyltransferase complex and p53 tumor suppression signaling and nominates FTO-IT1 as a potential therapeutic target of cancer.


Two novel VHL targets, TGFBI (BIGH3) and its transactivator KLF10, are up-regulated in renal clear cell carcinoma and other tumors.

  • Sergey V Ivanov‎ et al.
  • Biochemical and biophysical research communications‎
  • 2008‎

Mutations in the VHL gene are associated with highly vascular tumors of kidney, brain, retina, and adrenal gland. The inability of the mutant VHL protein to destabilize HIF-1 plays a crucial role in malignant angiogenesis. VHL is also associated with ECM assembly but the molecular mechanisms of this activity remain unclear. We used expression arrays and cell lines with different VHL status to identify ECM-associated genes controlled by VHL. One of them, adhesion-associated TGFBI, was repressed by VHL and overexpressed in renal, gastrointestinal, brain, and other tumors. Analyzing the mechanism of TGFBI up-regulation in clear cell carcinoma, we identified a novel VHL target, a Kruppel-like transcriptional factor 10 (KLF10). The TGFBI promoter, which we isolated and studied in Luc-reporter assay, was induced by KLF10 but not hypoxia. These data provide the molecular basis for the observed VHL effect on TGFBI and stimulate further research into the KLF10 and TGFBI roles in cancer.


KLF10 Mediated Epigenetic Dysregulation of Epithelial CD40/CD154 Promotes Endometriosis.

  • Abigail A Delaney‎ et al.
  • Biology of reproduction‎
  • 2016‎

Endometriosis is a highly prevalent, chronic, heterogeneous, fibro-inflammatory disease that remains recalcitrant to conventional therapy. We previously showed that loss of KLF11, a transcription factor implicated in uterine disease, results in progression of endometriosis. Despite extensive homology, co-expression, and human disease association, loss of the paralog Klf10 causes a unique inflammatory, cystic endometriosis phenotype in contrast to fibrotic progression seen with loss of Klf11. We identify here for the first time a novel role for KLF10 in endometriosis. In an animal endometriosis model, unlike wild-type controls, Klf10(-/-) animals developed cystic lesions with massive immune infiltrate and minimal peri-lesional fibrosis. The Klf10(-/-) disease progression phenotype also contrasted with prolific fibrosis and minimal immune cell infiltration seen in Klf11(-/-) animals. We further found that lesion genotype rather than that of the host determined each unique disease progression phenotype. Mechanistically, KLF10 regulated CD40/CD154-mediated immune pathways. Both inflammatory as well as fibrotic phenotypes are the commonest clinical manifestations in chronic fibro-inflammatory diseases such as endometriosis. The complementary, paralogous Klf10 and Klf11 models therefore offer novel insights into the mechanisms of inflammation and fibrosis in a disease-relevant context. Our data suggests that divergence in underlying gene dysregulation critically determines disease-phenotype predominance rather than the conventional paradigm of inflammation being precedent to fibrotic scarring. Heterogeneity in clinical progression and treatment response are thus likely from disparate gene regulation profiles. Characterization of disease phenotype-associated gene dysregulation offers novel approaches for developing targeted, individualized therapy for recurrent and recalcitrant chronic disease.


Estrogen receptor beta repurposes EZH2 to suppress oncogenic NFκB/p65 signaling in triple negative breast cancer.

  • Kirsten G M Aspros‎ et al.
  • NPJ breast cancer‎
  • 2022‎

Triple Negative Breast Cancer (TNBC) accounts for 15-20% of all breast cancer cases, yet is responsible for a disproportionately high percentage of breast cancer mortalities. Thus, there is an urgent need to identify novel biomarkers and therapeutic targets based on the molecular events driving TNBC pathobiology. Estrogen receptor beta (ERβ) is known to elicit anti-cancer effects in TNBC, however its mechanisms of action remain elusive. Here, we report the expression profiles of ERβ and its association with clinicopathological features and patient outcomes in the largest cohort of TNBC to date. In this cohort, ERβ was expressed in approximately 18% of TNBCs, and expression of ERβ was associated with favorable clinicopathological features, but correlated with different overall survival outcomes according to menopausal status. Mechanistically, ERβ formed a co-repressor complex involving enhancer of zeste homologue 2/polycomb repressive complex 2 (EZH2/PRC2) that functioned to suppress oncogenic NFκB/RELA (p65) activity. Importantly, p65 was shown to be required for formation of this complex and for ERβ-mediated suppression of TNBC. Our findings indicate that ERβ+ tumors exhibit different characteristics compared to ERβ- tumors and demonstrate that ERβ functions as a molecular switch for EZH2, repurposing it for tumor suppressive activities and repression of oncogenic p65 signaling.


A TGF-β/KLF10 signaling axis regulates atrophy-associated genes to induce muscle wasting in pancreatic cancer.

  • Aneesha Dasgupta‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Cancer cachexia, and its associated complications, represent a large and currently untreatable roadblock to effective cancer management. Many potential therapies have been proposed and tested-including appetite stimulants, targeted cytokine blockers, and nutritional supplementation-yet highly effective therapies are lacking. Innovative approaches to treating cancer cachexia are needed. Members of the Kruppel-like factor (KLF) family play wide-ranging and important roles in the development, maintenance, and metabolism of skeletal muscle. Within the KLF family, we identified KLF10 upregulation in a multitude of wasting contexts-including in pancreatic, lung, and colon cancer mouse models as well as in human patients. We subsequently interrogated loss-of-function of KLF10 as a potential strategy to mitigate cancer associated muscle wasting. In vivo studies leveraging orthotopic implantation of pancreas cancer cells into wild-type and KLF10 KO mice revealed significant preservation of lean mass and robust suppression of pro-atrophy muscle-specific ubiquitin ligases Trim63 and Fbxo32, as well as other factors implicated in atrophy, calcium signaling, and autophagy. Bioinformatics analyses identified Transforming growth factor beta (TGF-β), a known inducer of KLF10 and cachexia promoting factor, as a key upstream regulator of KLF10. We provide direct in vivo evidence that KLF10 KO mice are resistant to the atrophic effects of TGF-β. ChIP-based binding studies demonstrated direct binding to Trim63, a known wasting-associated atrogene. Taken together, we report a critical role for the TGF-β/KLF10 axis in the etiology of pancreatic cancer-associated muscle wasting and highlight the utility of targeting KLF10 as a strategy to prevent muscle wasting and limit cancer-associated cachexia.


Endoxifen downregulates AKT phosphorylation through protein kinase C beta 1 inhibition in ERα+ breast cancer.

  • Swaathi Jayaraman‎ et al.
  • NPJ breast cancer‎
  • 2023‎

Endoxifen, a secondary tamoxifen metabolite, is a potent antiestrogen exhibiting estrogen receptor alpha (ERα) binding at nanomolar concentrations. Phase I/II clinical trials identified clinical activity of Z-endoxifen (ENDX), in endocrine-refractory metastatic breast cancer as well as ERα+ solid tumors, raising the possibility that ENDX may have a second, ERα-independent, mechanism of action. An unbiased mass spectrometry approach revealed that ENDX concentrations achieved clinically with direct ENDX administration (5 µM), but not low concentrations observed during tamoxifen treatment (<0.1 µM), profoundly altered the phosphoproteome of the aromatase expressing MCF7AC1 cells with limited impact on the total proteome. Computational analysis revealed protein kinase C beta (PKCβ) and protein kinase B alpha or AKT1 as potential kinases responsible for mediating ENDX effects on protein phosphorylation. ENDX more potently inhibited PKCβ1 kinase activity compared to other PKC isoforms, and ENDX binding to PKCβ1 was confirmed using Surface Plasma Resonance. Under conditions that activated PKC/AKT signaling, ENDX induced PKCβ1 degradation, attenuated PKCβ1-activated AKTSer473 phosphorylation, diminished AKT substrate phosphorylation, and induced apoptosis. ENDX's effects on AKT were phenocopied by siRNA-mediated PKCβ1 knockdown or treatment with the pan-AKT inhibitor, MK-2206, while overexpression of constitutively active AKT diminished ENDX-induced apoptosis. These findings, which identify PKCβ1 as an ENDX target, indicate that PKCβ1/ENDX interactions suppress AKT signaling and induce apoptosis in breast cancer.


Human umbilical cord blood-derived mononuclear cells improve murine ventricular function upon intramyocardial delivery in right ventricular chronic pressure overload.

  • Saji Oommen‎ et al.
  • Stem cell research & therapy‎
  • 2015‎

Stem cell therapy has emerged as potential therapeutic strategy for damaged heart muscles. Umbilical cord blood (UCB) cells are the most prevalent stem cell source available, yet have not been fully tested in cardiac regeneration. Herein, studies were performed to evaluate the cardiovascular safety and beneficial effect of mononuclear cells (MNCs) isolated from human umbilical cord blood upon intramyocardial delivery in a murine model of right ventricle (RV) heart failure due to pressure overload.


TIEG1/KLF10 modulates Runx2 expression and activity in osteoblasts.

  • John R Hawse‎ et al.
  • PloS one‎
  • 2011‎

Deletion of TIEG1/KLF10 in mice results in a gender specific osteopenic skeletal phenotype with significant defects in both cortical and trabecular bone, which are observed only in female animals. Calvarial osteoblasts isolated from TIEG1 knockout (KO) mice display reduced expression levels of multiple bone related genes, including Runx2, and exhibit significant delays in their mineralization rates relative to wildtype controls. These data suggest that TIEG1 plays an important role in regulating Runx2 expression in bone and that decreased Runx2 expression in TIEG1 KO mice is in part responsible for the observed osteopenic phenotype. In this manuscript, data is presented demonstrating that over-expression of TIEG1 results in increased expression of Runx2 while repression of TIEG1 results in suppression of Runx2. Transient transfection and chromatin immunoprecipitation assays reveal that TIEG1 directly binds to and activates the Runx2 promoter. The zinc finger containing domain of TIEG1 is necessary for this regulation supporting that activation occurs through direct DNA binding. A role for the ubiquitin/proteasome pathway in fine tuning the regulation of Runx2 expression by TIEG1 is also implicated in this study. Additionally, the regulation of Runx2 expression by cytokines such as TGFβ1 and BMP2 is shown to be inhibited in the absence of TIEG1. Co-immunoprecipitation and co-localization assays indicate that TIEG1 protein associates with Runx2 protein resulting in co-activation of Runx2 transcriptional activity. Lastly, Runx2 adenoviral infection of TIEG1 KO calvarial osteoblasts leads to increased expression of Runx2 and enhancement of their ability to differentiate and mineralize in culture. Taken together, these data implicate an important role for TIEG1 in regulating the expression and activity of Runx2 in osteoblasts and suggest that decreased expression of Runx2 in TIEG1 KO mice contributes to the observed osteopenic bone phenotype.


Retinoblastoma binding protein-1 (RBP1) is a Runx2 coactivator and promotes osteoblastic differentiation.

  • David G Monroe‎ et al.
  • BMC musculoskeletal disorders‎
  • 2010‎

Numerous transcription factors are involved in the establishment and maintenance of the osteoblastic phenotype, such as Runx2, osterix and Dlx5. The transcription factor retinoblastoma binding protein-1 (RBP1) was recently identified as an estrogen regulated gene in an osteosarcoma cell model. Since the function of RBP1 in osteoblastic differentiation and mineralization is unknown, we investigated the role of RBP1 in these processes.


TIEG1 enhances Osterix expression and mediates its induction by TGFβ and BMP2 in osteoblasts.

  • Malayannan Subramaniam‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Deletion of TIEG1/KLF10 in mice results in an osteopenic skeletal phenotype with significant decreases in both bone mineral density and content throughout the skeleton. Calvarial osteoblasts isolated from TIEG1 knockout (KO) mice display numerous changes in gene expression and exhibit significant delays in their mineralization rates relative to wild-type (WT) controls. Here, we demonstrate that loss of TIEG1 expression in osteoblasts results in decreased levels of Osterix mRNA. Suppression of TIEG1 expression in WT osteoblasts leads to decreased Osterix expression while restoration of TIEG1 expression in TIEG1 KO osteoblasts results in increased levels of Osterix. Transient transfection and chromatin immunoprecipitation assays reveal that TIEG1 directly binds to and activates the Osterix promoter and demonstrate that the zinc finger-containing DNA binding domain of TIEG1 is necessary for this regulation. Furthermore, we reveal that TIEG1 expression is essential for the induction of Osterix expression by important bone-related cytokines such as TGFβ and BMP2 in osteoblast cells. Taken together, these data implicate an important role for TIEG1 in regulating the expression of Osterix, a master regulator of osteoblast differentiation and bone formation, and suggest that decreased expression of Osterix, as well as impaired TGFβ and BMP2 signaling, contribute to the observed osteopenic bone phenotype of TIEG1 KO mice.


Endoxifen's molecular mechanisms of action are concentration dependent and different than that of other anti-estrogens.

  • John R Hawse‎ et al.
  • PloS one‎
  • 2013‎

Endoxifen, a cytochrome P450 mediated tamoxifen metabolite, is being developed as a drug for the treatment of estrogen receptor (ER) positive breast cancer. Endoxifen is known to be a potent anti-estrogen and its mechanisms of action are still being elucidated. Here, we demonstrate that endoxifen-mediated recruitment of ERα to known target genes differs from that of 4-hydroxy-tamoxifen (4HT) and ICI-182,780 (ICI). Global gene expression profiling of MCF7 cells revealed substantial differences in the transcriptome following treatment with 4HT, endoxifen and ICI, both in the presence and absence of estrogen. Alterations in endoxifen concentrations also dramatically altered the gene expression profiles of MCF7 cells, even in the presence of clinically relevant concentrations of tamoxifen and its metabolites, 4HT and N-desmethyl-tamoxifen (NDT). Pathway analysis of differentially regulated genes revealed substantial differences related to endoxifen concentrations including significant induction of cell cycle arrest and markers of apoptosis following treatment with high, but not low, concentrations of endoxifen. Taken together, these data demonstrate that endoxifen's mechanism of action is different from that of 4HT and ICI and provide mechanistic insight into the potential importance of endoxifen in the suppression of breast cancer growth and progression.


Deciphering the Role of Klf10 in the Cerebellum.

  • Malek Kammoun‎ et al.
  • Journal of biomedical science and engineering‎
  • 2022‎

Recent studies have demonstrated a new role for Klf10, a Krüppel-like transcription factor, in skeletal muscle, specifically relating to mitochondrial function. Thus, it was of interest to analyze additional tissues that are highly reliant on optimal mitochondrial function such as the cerebellum and to decipher the role of Klf10 in the functional and structural properties of this brain region. In vivo (magnetic resonance imaging and localized spectroscopy, behavior analysis) and in vitro (histology, spectroscopy analysis, enzymatic activity) techniques were applied to comprehensively assess the cerebellum of wild type (WT) and Klf10 knockout (KO) mice. Histology analysis and assessment of locomotion revealed no significant difference in Klf10 KO mice. Diffusion and texture results obtained using MRI revealed structural changes in KO mice characterized as defects in the organization of axons. These modifications may be explained by differences in the levels of specific metabolites (myo-inositol, lactate) within the KO cerebellum. Loss of Klf10 expression also led to changes in mitochondrial activity as reflected by a significant increase in the activity of citrate synthase, complexes I and IV. In summary, this study has provided evidence that Klf10 plays an important role in energy production and mitochondrial function in the cerebellum.


TIEG1 modulates β-catenin sub-cellular localization and enhances Wnt signaling in bone.

  • Malayannan Subramaniam‎ et al.
  • Nucleic acids research‎
  • 2017‎

We have previously demonstrated that TGFβ Inducible Early Gene-1 (TIEG1), also known as KLF10, plays important roles in mediating skeletal development and homeostasis in mice. TIEG1 has also been identified in clinical studies as one of a handful of genes whose altered expression levels or allelic variations are associated with decreased bone mass and osteoporosis in humans. Here, we provide evidence for the first time that TIEG1 is involved in regulating the canonical Wnt signaling pathway in bone through multiple mechanisms of action. Decreased Wnt signaling in the absence of TIEG1 expression is shown to be in part due to impaired β-catenin nuclear localization resulting from alterations in the activity of AKT and GSK-3β. We also provide evidence that TIEG1 interacts with, and serves as a transcriptional co-activator for, Lef1 and β-catenin. Changes in Wnt signaling in the setting of altered TIEG1 expression and/or activity may in part explain the observed osteopenic phenotype of TIEG1 KO mice as well as the known links between TIEG1 expression levels/allelic variations and patients with osteoporosis.


ERβ inhibits cyclin dependent kinases 1 and 7 in triple negative breast cancer.

  • Jordan M Reese‎ et al.
  • Oncotarget‎
  • 2017‎

Triple negative breast cancer (TNBC), which comprises approximately 15% of all primary breast cancer diagnoses, lacks estrogen receptor alpha, progesterone receptor and human epidermal growth factor receptor 2 expression. However, we, and others, have demonstrated that approximately 30% of TNBCs express estrogen receptor beta (ERβ), a nuclear hormone receptor and potential drug target. Treatment of ERβ expressing MDA-MB-231 cells with estrogen or the ERβ selective agonist, LY500307, was shown to result in suppression of cell proliferation. This inhibitory effect was due to blockade of cell cycle progression. In vivo, estrogen treatment significantly repressed the growth of ERβ expressing MDA-MB-231 cell line xenografts. Gene expression studies and ingenuity pathway analysis identified a network of ERβ down-regulated genes involved in cell cycle progression including CDK1, cyclin B and cyclin H. siRNA mediated knockdown or drug inhibition of CDK1 and CDK7 in TNBC cells resulted in substantial decreases in proliferation regardless of ERβ expression. These data suggest that the tumor suppressive effects of ERβ in TNBC result from inhibition of cell cycle progression, effects that are in part mediated by suppression of CDK1/7. Furthermore, these data indicate that blockade of CDK1/7 activity in TNBC may be of therapeutic benefit, an area of study that has yet to be explored.


Krüppel-Like Factor 10 participates in cervical cancer immunoediting through transcriptional regulation of Pregnancy-Specific Beta-1 Glycoproteins.

  • Daniel Marrero-Rodríguez‎ et al.
  • Scientific reports‎
  • 2018‎

Cervical cancer (CC) is associated with alterations in immune system balance, which is primarily due to a shift from Th1 to Th2 and the unbalance of Th17/Treg cells. Using in silico DNA copy number analysis, we have demonstrated that ~20% of CC samples exhibit gain of 8q22.3 and 19q13.31; the regions of the genome that encodes the KLF10 and PSG genes, respectively. Gene expression studies demonstrated that there were no alterations in KLF10 mRNA expression, whilst the PSG2 and -5 genes were up-regulated by 1.76 and 3.97-fold respectively in CC compared to normal tissue controls. siRNA and ChIP experiments in SiHa cells have demonstrated that KLF10 participates in immune response through regulation of IL6, IL25 and PSG2 and PSG5 genes. Using cervical tissues from KLF10-/- mice, we have identified down-regulation of PSG17, -21 and -23 and IL11. These results suggest that KLF10 may regulate immune system response genes in cervical cancer among other functions. KLF10 and PSG copy number variations and alterations in mRNA expression levels could represent novel molecular markers in CC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: