Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism.

  • Megha Dubey‎ et al.
  • Cell death & disease‎
  • 2016‎

Neutrophils play an indispensable role in killing of invading pathogens by enhancing reactive oxygen species (ROS) and NO generation, and subsequently undergoing apoptosis. Unlike ROS/NOX2, role of NO/NOS still remains undefined in the apoptosis of neutrophils (PMNs) and the present study attempts to decipher the importance of NO/NOS in the neutrophil apoptosis. Prolonged treatment of human PMNs or mice bone marrow derived neutrophils (BMDN) with NO led to enhanced ROS generation, caspase-8/caspase-3 cleavage, reduced mitochondrial membrane potential and finally cellular apoptosis. NO-induced ROS generation led to caspase-8 deglutathionylation and activation, which subsequently activated mitochondrial death pathway via BID (Bcl-2 family protein) cleavage. NO-mediated augmentation of caspase-8 and BID cleavage was significantly prevented in BMDN from neutrophil cytosolic factor-1 (NCF-1) knockout (KO) mice, implying the involvement of NOX2 in NO-induced apoptosis of PMNs. Furthermore, ROS, NO generation and inducible nitric oxide synthase (iNOS) expression were enhanced in a time-dependent manner in human PMNs and mice BMDN undergoing spontaneous apoptosis. Pharmacological and genetic ablation of iNOS in human PMNs and mice BMDN significantly reduced the levels of apoptosis. Impaired apoptosis of BMDN from iNOS KO mice was due to reduced caspase-8 activity which subsequently prevented caspase-3 and -9 activation. Altogether, our results suggest a crucial role of NO/iNOS in neutrophil apoptosis via enhanced ROS generation and caspase-8 mediated activation of mitochondrial death pathway.


Differential responses of Trans-Resveratrol on proliferation of neural progenitor cells and aged rat hippocampal neurogenesis.

  • Vivek Kumar‎ et al.
  • Scientific reports‎
  • 2016‎

The plethora of literature has supported the potential benefits of Resveratrol (RV) as a life-extending as well as an anticancer compound. However, these two functional discrepancies resulted at different concentration ranges. Likewise, the role of Resveratrol on adult neurogenesis still remains controversial and less understood despite its well documented health benefits. To gather insight into the biological effects of RV on neurogenesis, we evaluated the possible effects of the compound on the proliferation and survival of neural progenitor cells (NPCs) in culture, and in the hippocampus of aged rats. Resveratrol exerted biphasic effects on NPCs; low concentrations (10 μM) stimulated cell proliferation mediated by increased phosphorylation of extracellular signal-regulated kinases (ERKs) and p38 kinases, whereas high concentrations (>20 μM) exhibited inhibitory effects. Administration of Resveratrol (20 mg/kg body weight) to adult rats significantly increased the number of newly generated cells in the hippocampus, with upregulation of p-CREB and SIRT1 proteins implicated in neuronal survival and lifespan extension respectively. We have successfully demonstrated that Resveratrol exhibits dose dependent discrepancies and at a lower concentration can have a positive impact on the proliferation, survival of NPCs and aged rat hippocampal neurogenesis implicating its potential as a candidate for restorative therapies against age related disorders.


MIR155 Regulation of Ubiquilin1 and Ubiquilin2: Implications in Cellular Protection and Tumorigenesis.

  • Sanjay Yadav‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2017‎

Ubiquilin (UBQLN) proteins are adaptors thought to link ubiquitinated proteins to the proteasome. However, our lab has recently reported a previously unappreciated role for loss of UBQLN in lung cancer progression. In fact, UBQLN genes are lost in over 50% of lung cancer samples examined. However, a reason for the loss of UBQLN has not been proposed, nor has a selective pressure that could lead to deletion of UBQLN been reported. Diesel Exhaust Particles (DEP) are a major concern in the large cities of developing nations and DEP exposed populations are at an increased risk of developing a number of illnesses, including lung cancer. A connection between DEP and UBQLN has never been examined. In the present study, we determined the effect of DEP on lung cell lines and were interested to determine if UBQLN proteins could potentially play a protective role following treatment with DEP. Interestingly, we found that DEP treated cells have increased expression of UBQLN proteins. In fact, over-expression of UBQLN was capable of protecting cells from DEP toxicity. To investigate the mechanism by which DEP leads to increased UBQLN protein levels, we identified and interrogated microRNAs that were predicted to regulate UBQLN mRNA. We found that DEP decreases the oncogenic microRNA, MIR155. Further, we showed that MIR155 regulates the mRNA of UBQLN1 and UBQLN2 in cells, such that increased MIR155 expression increased cell invasion, migration, wound formation and clonogenicity in UBQLN-loss dependent manner. This is the first report of an environmental carcinogen regulating expression of UBQLN proteins. We show that exposure of cells to DEP causes an increase in UBQLN levels and that MIR155 regulates mRNA of UBQLN. Thus, we propose that DEP-induced repression of MIR155 leads to increased UBQLN levels, which in turn may be a selective pressure on lung cells to lose UBQLN1.


The origin and impact of bound water around intrinsically disordered proteins.

  • Korey M Reid‎ et al.
  • Biophysical journal‎
  • 2022‎

Proteins and water couple dynamically over a wide range of time scales. Motivated by their central role in protein function, protein-water dynamics and thermodynamics have been extensively studied for structured proteins, where correspondence to structural features has been made. However, properties controlling intrinsically disordered protein (IDP)-water dynamics are not yet known. We report results of megahertz-to-terahertz dielectric spectroscopy and molecular dynamics simulations of a group of IDPs with varying charge content along with structured proteins of similar size. Hydration water around IDPs is found to exhibit more heterogeneous rotational and translational dynamics compared with water around structured proteins of similar size, yielding on average more restricted dynamics around individual residues of IDPs, charged or neutral, compared with structured proteins. The on-average slower water dynamics is found to arise from excess tightly bound water in the first hydration layer, which is related to greater exposure to charged groups. The more tightly bound water to IDPs correlates with the smaller hydration shell found experimentally, and affects entropy associated with protein-water interactions, the contribution of which we estimate based on the dielectric measurements and simulations. Water-IDP dynamic coupling at terahertz frequencies is characterized by the dielectric measurements and simulations.


Early life exposure to poly I:C impairs striatal DA-D2 receptor binding, myelination and associated behavioural abilities in rats.

  • Brijendra Singh‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2021‎

Early-life viral infections critically influence the brain development and have been variously reported to cause neuropsychiatric diseases such as Schizophrenia, Parkinson's diseases, demyelinating diseases, etc. To investigate the alterations in the dopaminergic system, myelination and associated behavioral impairments following neonatal viral infection, the viral immune activation model was created by an intraperitoneal injection of Poly I:C (5 mg/kg bw/ip) to neonatal rat pups on PND-7. The DA-D2 receptor binding was assessed in corpus striatum by using 3H-Spiperone at 3, 6 and 12 weeks of age. MOG immunolabelling was performed to check myelination stature and myelin integrity, while corpus callosum calibre was assessed by Luxol fast blue staining. Relative behavioral tasks i.e., motor activity, motor coordination and neuromuscular strength were assessed by open field, rotarod and grip strength meter respectively at 3, 6 and 12 weeks of age. Following Poly I:C exposure, a significant decrease in DA-D2 receptor binding, reduction in corpus callosum calibre and MOG immunolabelling indicating demyelination and a significant decrease in locomotor activity, neuromuscular strength and motor coordination signify motor deficits and hypokinetic influence of early life viral infection. Thus, the findings suggest that early life poly I:C exposure may cause demyelination and motor deficits by decreasing DA-D2 receptor binding affinity.


A proteomic approach to investigate enhanced responsiveness in rechallenged adult rats prenatally exposed to lindane.

  • Ankita Srivastava‎ et al.
  • Neurotoxicology‎
  • 2019‎

Proteomic analysis was carried out in substantia nigra (SNi) and hippocampus (Hi) isolated from rat offspring born to mothers exposed to lindane (orally; 0.25 mg/kg) from gestation day 5 (GD5) to GD 21 and subsequently rechallenged (orally; 2.5 mg/kg X 21 days) at adulthood (12 weeks). 2D gel electrophoresis revealed no significant differences in the expression of proteins in brain regions isolated from prenatally exposed offspring at adulthood. Significantly greater magnitude of alterations was observed in the expression of proteins related to mitochondrial and energy metabolism, ubiquitin-proteasome pathway, structural and axonal growth leading to increased oxidative stress in Hi and SNi isolated from rechallenged offspring when compared to control offspring treated postnatally with lindane. Western blotting and DNA laddering showed a greater magnitude of increase in apoptosis in the Hi and SNi of rechallenged offspring. Ultrastructural analysis demonstrated disrupted mitochondrial integrity, synaptic disruption and necrotic structures in the brain region of rechallenged offspring. Neurobehavioral studies also demonstrated a greater magnitude of alterations in cognitive and motor functions in rechallenged rats. The data suggest that prenatal exposure of lindane induces persistent molecular changes in the nervous system of offspring which are unmasked leading to neurodegeneration following rechallenge at adulthood.


Effect of Incorporation of Pomegranate Peel and Bagasse Powder and Their Extracts on Quality Characteristics of Chicken Meat Patties.

  • Priyanka Sharma‎ et al.
  • Food science of animal resources‎
  • 2020‎

This study was conducted to develop chicken meat patties by incorporating pomegranate peel and bagasse powders and their extracts. Patties were developed by incorporating pomegranate peel powder (PPP, 2 g), pomegranate aril bagasse powder (PABP, 4 g), pomegranate peel powder aqueous extract (PPAE, 6 g) and pomegranate aril bagasse powder aqueous extract (PABAE, 9 g) individually per 100 g of minced meat. Both types of powders and extracts treated patties had significantly higher total phenolic content than control and butylated hydroxytoluene (BHT) treated patties. Both types of powder (PPP and PABP) treated patties had significantly higher water holding capacity, ash, crude fibre content, and hardness values, and significantly lower moisture content and lightness values in comparison to control patties. Emulsion stability and cooking yield of PABP treated patties were significantly higher than control. Addition of extracts and BHT did not influence the physico-chemical properties and proximate composition of chicken patties. Both types of powders and extracts provided better protection to chicken meat patties against oxidative rancidity and microbial proliferation in comparison to control and BHT treated patties during refrigerated storage. It is concluded that pomegranate fruit byproducts in the form of peel powder, aril bagasse powder and their extracts can be successfully utilised in development of healthier chicken meat patties and these byproducts can also be effectively used as a replacement of synthetic antioxidants such as BHT.


Loss of cis-PTase function in the liver promotes a highly penetrant form of fatty liver disease that rapidly transitions to hepatocellular carcinoma.

  • Abhishek K Singh‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Obesity-linked fatty liver is a significant risk factor for hepatocellular carcinoma (HCC)1,2; however, the molecular mechanisms underlying the transition from non-alcoholic fatty liver disease (NAFLD) to HCC remains unclear. The present study explores the role of the endoplasmic reticulum (ER)-associated protein NgBR, an essential component of the cis-prenyltransferases (cis-PTase) enzyme3, in chronic liver disease. Here we show that genetic depletion of NgBR in hepatocytes of mice (N-LKO) intensifies triacylglycerol (TAG) accumulation, inflammatory responses, ER/oxidative stress, and liver fibrosis, ultimately resulting in HCC development with 100% penetrance after four months on a high-fat diet. Comprehensive genomic and single cell transcriptomic atlas from affected livers provides a detailed molecular analysis of the transition from liver pathophysiology to HCC development. Importantly, pharmacological inhibition of diacylglycerol acyltransferase-2 (DGAT2), a key enzyme in hepatic TAG synthesis, abrogates diet-induced liver damage and HCC burden in N-LKO mice. Overall, our findings establish NgBR/cis-PTase as a critical suppressor of NAFLD-HCC conversion and suggests that DGAT2 inhibition may serve as a promising therapeutic approach to delay HCC formation in patients with advanced non-alcoholic steatohepatitis (NASH).


L-Plastin S-glutathionylation promotes reduced binding to β-actin and affects neutrophil functions.

  • Megha Dubey‎ et al.
  • Free radical biology & medicine‎
  • 2015‎

Posttranslational modifications (PTMs) of cytoskeleton proteins due to oxidative stress associated with several pathological conditions often lead to alterations in cell function. The current study evaluates the effect of nitric oxide (DETA-NO)-induced oxidative stress-related S-glutathionylation of cytoskeleton proteins in human PMNs. By using in vitro and genetic approaches, we showed that S-glutathionylation of L-plastin (LPL) and β-actin promotes reduced chemotaxis, polarization, bactericidal activity, and phagocytosis. We identified Cys-206, Cys-283, and Cys-460as S-thiolated residues in the β-actin-binding domain of LPL, where cys-460 had the maximum score. Site-directed mutagenesis of LPL Cys-460 further confirmed the role in the redox regulation of LPL. S-Thiolation diminished binding as well as the bundling activity of LPL. The presence of S-thiolated LPL was detected in neutrophils from both diabetic patients and db/db mice with impaired PMN functions. Thus, enhanced nitroxidative stress may results in LPL S-glutathionylation leading to impaired chemotaxis, polarization, and bactericidal activity of human PMNs, providing a mechanistic basis for their impaired functions in diabetes mellitus.


Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells.

  • Vinay K Tripathi‎ et al.
  • PloS one‎
  • 2014‎

The expression and metabolic profile of cytochrome P450s (CYPs) is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y) and glial (U373-MG) cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC), cyclophosphamide (CPA), ethanol and known neurotoxicant- monocrotophos (MCP), a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h) of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against xenobiotics.


Human Cytomegalovirus miR-UL70-3p Downregulates the H2O2-Induced Apoptosis by Targeting the Modulator of Apoptosis-1 (MOAP1).

  • Abhishek Pandeya‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Human Cytomegalovirus (HCMV) is a prototypic beta herpesvirus, causing persistent infections in humans. There are medications that are used to treat the symptoms; however, there is no cure yet. Thus, understanding the molecular mechanisms of HCMV replication and its persistence may reveal new prevention strategies. HCMV evasive strategies on the antiviral responses of the human host largely rely on its significant portion of genome. Numerous studies have highlighted the importance of miRNA-mediated regulation of apoptosis, which is an innate immune mechanism that eradicates virus-infected cells. In this study, we explore the antiapoptotic role of hcmv-miR-UL70-3p in HEK293T cells. We establish that hcmv-miR-UL70-3p targets the proapoptotic gene Modulator of Apoptosis-1 (MOAP1) through interaction with its 3'UTR region of mRNA. The ectopic expression of hcmv-miR-UL70-3p mimic significantly downregulates the H2O2-induced apoptosis through the translational repression of MOAP1. Silencing of MOAP1 through siRNA also inhibits the H2O2-induced apoptosis, which further supports the hcmv-miR-UL70-3p mediated antiapoptotic effect by regulating MOAP1 expression. These results uncover a role for hcmv-miR-UL70-3p and its target MOAP1 in regulating apoptosis.


Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis.

  • Binod Aryal‎ et al.
  • JCI insight‎
  • 2018‎

Alterations in ectopic lipid deposition and circulating lipids are major risk factors for developing cardiometabolic diseases. Angiopoietin-like protein 4 (ANGPTL4), a protein that inhibits lipoprotein lipase (LPL), controls fatty acid (FA) uptake in adipose and oxidative tissues and regulates circulating triacylglycerol-rich (TAG-rich) lipoproteins. Unfortunately, global depletion of ANGPTL4 results in severe metabolic abnormalities, inflammation, and fibrosis when mice are fed a high-fat diet (HFD), limiting our understanding of the contribution of ANGPTL4 in metabolic disorders. Here, we demonstrate that genetic ablation of ANGPTL4 in adipose tissue (AT) results in enhanced LPL activity, rapid clearance of circulating TAGs, increased AT lipolysis and FA oxidation, and decreased FA synthesis in AT. Most importantly, we found that absence of ANGPTL4 in AT prevents excessive ectopic lipid deposition in the liver and muscle, reducing novel PKC (nPKC) membrane translocation and enhancing insulin signaling. As a result, we observed a remarkable improvement in glucose tolerance in short-term HFD-fed AT-specific Angptl4-KO mice. Finally, lack of ANGPTL4 in AT enhances the clearance of proatherogenic lipoproteins, attenuates inflammation, and reduces atherosclerosis. Together, these findings uncovered an essential role of AT ANGPTL4 in regulating peripheral lipid deposition, influencing whole-body lipid and glucose metabolism and the progression of atherosclerosis.


Brown adipose tissue derived ANGPTL4 controls glucose and lipid metabolism and regulates thermogenesis.

  • Abhishek K Singh‎ et al.
  • Molecular metabolism‎
  • 2018‎

Brown adipose tissue (BAT) controls triglyceride-rich lipoprotein (TRL) catabolism. This process is mediated by the lipoprotein lipase (LPL), an enzyme that catalyzed the hydrolysis of triglyceride (TAG) in glycerol and fatty acids (FA), which are burned to generate heat. LPL activity is regulated by angiopoietin-like 4 (ANGPTL4), a secretory protein produced in adipose tissues (AT), liver, kidney, and muscle. While the role of ANGPTL4 in regulating lipoprotein metabolism is well established, the specific contribution of BAT derived ANGPTL4 in controlling lipid and glucose homeostasis is not well understood.


Overexpression of cerebral cytochrome P450s in prenatally exposed offspring modify the toxicity of lindane in rechallenged offspring.

  • Anita Agrahari‎ et al.
  • Toxicology and applied pharmacology‎
  • 2019‎

Prenatal exposure to low doses of lindane, an organochlorine insecticide used in public health and agriculture, induced a persistent increase in the expression of cerebral cytochrome P450s (CYPs) in rat offspring and modify the adult response to a later exposure of xenobiotics. To understand the mechanism involved in the modification of adult response, rat offspring exposed prenatally to lindane (p.o.; 0.25 mg/kg b.wt. from gestation day 5-21) were rechallenged with lindane (p.o.; 5 mg/kg X 5 days) postnatally at 9- or 18- or 27 weeks. The greater magnitude of increase in the expression of cerebral CYPs in rechallenged offspring and decline in the magnitude of increase in CYPs with increasing age correlated with the amount of lindane accumulating in the brain. Significant alterations in the circulatory levels of hormones in the rechallenged offspring suggest that these alterations may partly account for the persistence in the increase in the cerebral CYPs during development. Epigenetic data further revealed alterations in histone H3 acetylation and DNA methylation in promoter regions of cerebral CYPs isolated from rechallenged offspring at 9- or 18- or 27 weeks. Bisulphite sequencing revealing critical CpG methylation changes in the promoter regions in rechallenged offspring at 9 weeks demonstrated imprinting of the cerebral CYPs. Further, a greater magnitude of increase in apoptosis in the brain of rechallenged offspring has suggested that enhanced responsiveness of cerebral CYPs, which may result due to alterations in circulatory hormones, increased accumulation of lindane in the brain and epigenetic regulation of CYPs, is of toxicological relevance.


Neutrophils Derived from Genetically Modified Human Induced Pluripotent Stem Cells Circulate and Phagocytose Bacteria In Vivo.

  • Lisa R Trump‎ et al.
  • Stem cells translational medicine‎
  • 2019‎

Bacterial and fungal infections are a major cause of morbidity and mortality in neutropenic patients. Donor-derived neutrophil transfusions have been used for prophylaxis or treatment for infection in neutropenic patients. However, the short half-life and the limited availability of large numbers of donor-derived neutrophils for transfusion remain a significant hurdle in the implementation of neutrophil transfusion therapy. Here, we investigate the in vitro and in vivo activity of neutrophils generated from human induced pluripotent stem cells (iPSC), a potentially unlimited resource to produce neutrophils for transfusion. Phenotypic analysis of iPSC-derived neutrophils reveal reactive oxygen species production at similar or slightly higher than normal peripheral blood neutrophils, but have an ∼50%-70% reduced Escherichia coli phagocytosis and phorbol 12-myristate 13-acetate induced formation of neutrophil extracellular traps (NET). Signaling of granulocytic precursors identified impaired AKT activation, but not ERK or STAT3, in agonist-stimulated iPSC-derived neutrophils. Expression of a constitutively activated AKT in iPSC-derived neutrophils restores most phagocytic activity and NET formation. In a model of bacterial induced peritonitis in immunodeficient mice, iPSC-derived neutrophils, with or without corrected AKT activation, migrate similarly to the peritoneal fluid as peripheral blood neutrophils, whereas the expression of activated AKT significantly improves their phagocytic activity in vivo. Stem Cells Translational Medicine 2019;8:557-567.


Effect of wheat bran and dried carrot pomace addition on quality characteristics of chicken sausage.

  • Sanjay Yadav‎ et al.
  • Asian-Australasian journal of animal sciences‎
  • 2018‎

Effect of addition of wheat bran (WB) and dried carrot pomace (DCP) on sensory, textural, colour, physico-chemical and nutritional characteristics of chicken sausage were evaluated.


Suppression of angiopoietin-like 4 reprograms endothelial cell metabolism and inhibits angiogenesis.

  • Balkrishna Chaube‎ et al.
  • Nature communications‎
  • 2023‎

Angiopoietin-like 4 (ANGPTL4) is known to regulate various cellular and systemic functions. However, its cell-specific role in endothelial cells (ECs) function and metabolic homeostasis remains to be elucidated. Here, using endothelial-specific Angptl4 knock-out mice (Angptl4iΔEC), and transcriptomics and metabolic flux analysis, we demonstrate that ANGPTL4 is required for maintaining EC metabolic function vital for vascular permeability and angiogenesis. Knockdown of ANGPTL4 in ECs promotes lipase-mediated lipoprotein lipolysis, which results in increased fatty acid (FA) uptake and oxidation. This is also paralleled by a decrease in proper glucose utilization for angiogenic activation of ECs. Mice with endothelial-specific deletion of Angptl4 showed decreased pathological neovascularization with stable vessel structures characterized by increased pericyte coverage and reduced permeability. Together, our study denotes the role of endothelial-ANGPTL4 in regulating cellular metabolism and angiogenic functions of EC.


Trans-resveratrol restores the damages induced by organophosphate pesticide-monocrotophos in neuronal cells.

  • Vivek Kumar‎ et al.
  • Toxicology international‎
  • 2013‎

The restorative potential of trans-resveratrol (RV) was investigated in a rat neuronal cell line (PC12) exposed to organophosphate pesticide-monocrotophos (MCP). RV shows significant protection against MCP-induced alterations in PC12 cells by restoration of oxidative stress-mediated apoptosis and cytotoxicity. RV treatment significantly reduced reactive oxygen species (ROS) production and lipid peroxidation, and also restored glutathione levels and mitochondrial membrane potential, in cells receiving MCP. Restoration of markers such as cytochrome c, Bax, Bcl-2 and caspase-3 also confirms the effectiveness of RV against MCP-induced, mitochondria-mediated apoptosis in PC12 cells. The data identify the protective/restorative potential of RV against MCP-induced neuronal damages by affecting ROS production and the level of antioxidant defence enzymes.


Gene expression profiling of candidate genes in peripheral blood mononuclear cells for predicting toxicity of diesel exhaust particles.

  • Ankita Srivastava‎ et al.
  • Free radical biology & medicine‎
  • 2014‎

To validate gene expression profiling of peripheral blood mononuclear cells (PBMCs) as a surrogate for monitoring tissue expression, this study using RT-PCR-based TaqMan low-density array (TLDA) was initiated to investigate similarities in the mRNA expression of target genes altered by exposure to diesel exhaust particles (DEPs) in freshly prepared PBMCs and in lungs. Adult Wistar rats were treated transtracheally with a single dose of 7.5 or 15 or 30mg/kg DEPs and sacrificed 24h later. Blood and lungs were immediately taken out and processed for RT-PCR. DEP treatment induced similar patterns of increase in the expression of polycyclic aromatic hydrocarbon-responsive cytochrome P450s, the phase II enzymes, and their associated transcription factors in both lungs and PBMCs, at all doses. Similar to that seen in lungs, a dose-dependent increase was observed in the expression of genes involved in inflammation, such as cytokines, chemokines, and adhesion molecules, in PBMCs. The expression of various genes involved in DNA repair and apoptosis was also increased in a dose-dependent manner in PBMCs and lungs. The present TLDA data indicating similarities in the responsiveness of candidate genes involved in the toxicity of DEPs between PBMCs and lungs after exposure to DEPs demonstrate that expression profiles of genes in PBMCs could be used as a surrogate for monitoring the acute toxicity of fine and ultrafine particulate matter present in vehicular emissions.


Immunogenicity and protective potential of Bordetella pertussis biofilm and its associated antigens in a murine model.

  • Dorji Dorji‎ et al.
  • Cellular immunology‎
  • 2019‎

The resurgence of whooping cough reflects novel genetic variants of Bordetella pertussis and inadequate protection conferred by current acellular vaccines (aP). Biofilm is a source of novel vaccine candidates, including membrane protein assembly factor (BamB) and lipopolysaccharide assembly protein (LptD). Responses of BALB/c mice to candidate vaccines included IFN-γ and IL-17a production by spleen and lymph node cells, and serum IgG1 and IgG2a reactive with whole bacteria or aP. Protection was determined using bacterial cultured from lungs of vaccinated mice challenged with virulent B. pertussis. Mice vaccinated with biofilm produced efficient IFN-γ responses and more IL-17a and IgG2a than mice vaccinated with planktonic cells, aP or adjuvant alone. Vaccination with aP produced abundant IgG1 with little IgG2a. Mice vaccinated with aP plus BamB and LptD retained lower bacterial loads than mice vaccinated with aP alone. Whooping cough vaccines formulated with biofilm antigens, including BamB and LptD, may have clinical value.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: