Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Assessment of the CYP1A2 Inhibition-Mediated Drug Interaction Potential for Pinocembrin Using In Silico, In Vitro, and In Vivo Approaches.

  • Shipra Bhatt‎ et al.
  • ACS omega‎
  • 2022‎

Pinocembrin, a bioflavonoid, is extensively used in complementary/alternative medicine. It turns out as a promising candidate against neurodegenerative diseases because of its multifaceted pharmacological action toward neuroprotection. However, literature evidence is still lacking for its inhibitory action on CYP1A2, which is responsible for xenobiotic metabolism leading to the generation of toxic metabolites and bioactivation of procarcinogens. In the present study, our aim was to evaluate the CYP1A2 inhibitory potential of pinocembrin via in silico, in vitro, and in vivo investigations. From the results of in vitro studies, pinocembrin is found to be a potent and competitive inhibitor of CYP1A2. In vitro-in vivo extrapolation results indicate the potential of pinocembrin to interact with CYP1A2 substrate drugs clinically. Molecular docking-based in silico studies demonstrate the strong interaction of pinocembrin with human CYP1A2. In in vivo investigations using a rat model, pinocembrin displayed a marked alteration in the plasma exposure of CYP1A2 substrate drugs, namely, caffeine and tacrine. In conclusion, pinocembrin has a potent CYP1A2 inhibitory action to cause drug interactions, and further confirmatory study is warranted at the clinical level.


Effect of Concomitant Hydroxyurea Therapy with Rutin and Gallic Acid: Integration of Pharmacokinetic and Pharmacodynamic Approaches.

  • Abhishek Gour‎ et al.
  • ACS omega‎
  • 2021‎

Hydroxyurea (HU) is the first-ever approved drug by USFDA for sickle cell anemia (SCA). However, its treatment is associated with severe side effects like myelosuppression. Current studies are focused on the supplementation therapy for symptomatic management of SCA. In the present study, we aimed to explore rutin's and gallic acid's potential individually, for concomitant therapy with HU using pharmacokinetic and pharmacodynamic approaches since there is no such precedent till date. In vivo pharmacokinetic studies of HU in rats showed that rutin could be safely co-administered with HU, while gallic acid significantly raised the plasma concentration of HU. Both the phytochemicals did not have any marked inhibitory effect on urease but have considerable effects on horseradish peroxidase enzyme. The experimental phytoconstituents displayed a very low propensity to cause in vitro hemolysis. Gallic acid markedly enhanced the HU-induced decrease in lymphocyte proliferation. A substantial improvement by rutin or gallic acid was observed in HU-induced reduction of the main hematological parameters in rats. Combined treatment of HU with rutin and gallic acid reduced serum levels of both IL-6 and IL-17A. Overall, both rutin and gallic acid are found to have promising phytotherapy potential with HU. Further exploration needs to be done on both candidates for use as phytotherapeutics for SCA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: