Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas.

  • Sameer Agnihotri‎ et al.
  • The Journal of experimental medicine‎
  • 2011‎

Glioblastoma Multiforme (GBM), the most common and lethal primary human brain tumor, exhibits multiple molecular aberrations. We report that loss of the transcription factor GATA4, a negative regulator of normal astrocyte proliferation, is a driver in glioma formation and fulfills the hallmarks of a tumor suppressor gene (TSG). Although GATA4 was expressed in normal brain, loss of GATA4 was observed in 94/163 GBM operative samples and was a negative survival prognostic marker. GATA4 loss occurred through promoter hypermethylation or novel somatic mutations. Loss of GATA4 in normal human astrocytes promoted high-grade astrocytoma formation, in cooperation with other relevant genetic alterations such as activated Ras or loss of TP53. Loss of GATA4 with activated Ras in normal astrocytes promoted a progenitor-like phenotype, formation of neurospheres, and the ability to differentiate into astrocytes, neurons, and oligodendrocytes. Re-expression of GATA4 in human GBM cell lines, primary cultures, and brain tumor-initiating cells suppressed tumor growth in vitro and in vivo through direct activation of the cell cycle inhibitor P21(CIP1), independent of TP53. Re-expression of GATA4 also conferred sensitivity of GBM cells to temozolomide, a DNA alkylating agent currently used in GBM therapy. This sensitivity was independent of MGMT (O-6-methylguanine-DNA-methyltransferase), the DNA repair enzyme which is often implicated in temozolomide resistance. Instead, GATA4 reduced expression of APNG (alkylpurine-DNA-N-glycosylase), a DNA repair enzyme which is poorly characterized in GBM-mediated temozolomide resistance. Identification and validation of GATA4 as a TSG and its downstream targets in GBM may yield promising novel therapeutic strategies.


Conditional astroglial Rictor overexpression induces malignant glioma in mice.

  • Tariq Bashir‎ et al.
  • PloS one‎
  • 2012‎

Hyperactivation of the mTORC2 signaling pathway has been shown to contribute to the oncogenic properties of gliomas. Moreover, overexpression of the mTORC2 regulatory subunit Rictor has been associated with increased proliferation and invasive character of these tumor cells.


Radial glia cells are candidate stem cells of ependymoma.

  • Michael D Taylor‎ et al.
  • Cancer cell‎
  • 2005‎

Tumors of the same histologic type often comprise clinically and molecularly distinct subgroups; however, the etiology of these subgroups is unknown. Here, we report that histologically identical, but genetically distinct, ependymomas exhibit patterns of gene expression that recapitulate those of radial glia cells in the corresponding region of the central nervous system. Cancer stem cells isolated from ependymomas displayed a radial glia phenotype and formed tumors when orthotopically transplanted in mice. These findings identify restricted populations of radial glia cells as candidate stem cells of the different subgroups of ependymoma, and they support a general hypothesis that subgroups of the same histologic tumor type are generated by different populations of progenitor cells in the tissues of origin.


Role of moesin in hyaluronan induced cell migration in glioblastoma multiforme.

  • Leroi V DeSouza‎ et al.
  • Molecular cancer‎
  • 2013‎

A major barrier to effective treatment of glioblastoma multiforme (GBM) is the invasion of glioma cells into the brain parenchyma rendering local therapies such as surgery and radiation therapy ineffective. GBM patients with such highly invasive and infiltrative tumors have poor prognosis with a median survival time of only about a year. However, the mechanisms leading to increased cell migration, invasion and diffused behavior of glioma cells are still poorly understood.


Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma.

  • David H Gutmann‎ et al.
  • Genome research‎
  • 2013‎

Low-grade brain tumors (pilocytic astrocytomas) arising in the neurofibromatosis type 1 (NF1) inherited cancer predisposition syndrome are hypothesized to result from a combination of germline and acquired somatic NF1 tumor suppressor gene mutations. However, genetically engineered mice (GEM) in which mono-allelic germline Nf1 gene loss is coupled with bi-allelic somatic (glial progenitor cell) Nf1 gene inactivation develop brain tumors that do not fully recapitulate the neuropathological features of the human condition. These observations raise the intriguing possibility that, while loss of neurofibromin function is necessary for NF1-associated low-grade astrocytoma development, additional genetic changes may be required for full penetrance of the human brain tumor phenotype. To identify these potential cooperating genetic mutations, we performed whole-genome sequencing (WGS) analysis of three NF1-associated pilocytic astrocytoma (PA) tumors. We found that the mechanism of somatic NF1 loss was different in each tumor (frameshift mutation, loss of heterozygosity, and methylation). In addition, tumor purity analysis revealed that these tumors had a high proportion of stromal cells, such that only 50%-60% of cells in the tumor mass exhibited somatic NF1 loss. Importantly, we identified no additional recurrent pathogenic somatic mutations, supporting a model in which neuroglial progenitor cell NF1 loss is likely sufficient for PA formation in cooperation with a proper stromal environment.


Role of angiopoietin-2 in regulating growth and vascularity of astrocytomas.

  • Gelareh Zadeh‎ et al.
  • Journal of oncology‎
  • 2010‎

Angiopoietins and Tie2 are angiogenic-specific ligand and receptor complex that have been shown to play a critical role in tumor angiogenesis. Angiopoietin-2 (Ang2) is one of four ligands for receptor Tie2 and it is the naturally occurring antagonist to Tie2, inhibiting the action of Angiopoietin-1 (Ang1). Over the last decade, significant research has focused on elucidating the role of Ang2 in cancer biology and its exact role in tumor angiogenesis remains elusive. In this study we have focused on establishing the role of Ang2 in angiogenesis of malignant astrocytomas. We have demonstrated that Ang2 significantly enhances the vascular growth of malignant astrocytomas and constant upregulation of Ang2 throughout all phases of tumor growth generates abnormal vascular structures that are not typically seen in human astrocytomas, suggesting that Ang2 plays a tumor stage-dependent role and is not a consistently elevated throughout all growth stages of malignant astroctyomas.


Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma.

  • Hendrik Witt‎ et al.
  • Cancer cell‎
  • 2011‎

Despite the histological similarity of ependymomas from throughout the neuroaxis, the disease likely comprises multiple independent entities, each with a distinct molecular pathogenesis. Transcriptional profiling of two large independent cohorts of ependymoma reveals the existence of two demographically, transcriptionally, genetically, and clinically distinct groups of posterior fossa (PF) ependymomas. Group A patients are younger, have laterally located tumors with a balanced genome, and are much more likely to exhibit recurrence, metastasis at recurrence, and death compared with Group B patients. Identification and optimization of immunohistochemical (IHC) markers for PF ependymoma subgroups allowed validation of our findings on a third independent cohort, using a human ependymoma tissue microarray, and provides a tool for prospective prognostication and stratification of PF ependymoma patients.


Investigation of the in vitro therapeutic efficacy of nilotinib in immortalized human NF2-null vestibular schwannoma cells.

  • Nesrin Sabha‎ et al.
  • PloS one‎
  • 2012‎

Vestibular schwannomas (VS) are a common posterior fossa brain tumor, and though benign can cause significant morbidity, particularly loss of hearing, tinnitus, vertigo and facial paralysis. The current treatment options for VS include microsurgical resection, stereotactic radiosurgery or close surveillance monitoring, with each treatment option carrying associated complications and morbidities. Most importantly, none of these options can definitively reverse hearing loss or tinnitus. Identification of a novel medical therapy, through the use of targeted molecular inhibition, is therefore a highly desirable treatment strategy that may minimize complications arising from both tumor and treatment and more importantly be suitable for patients whose options are limited with respect to surgical or radiosurgical interventions. In this study we chose to examine the effect of Nilotinib on VS. Nilotinib (Tasigna®) is a second-generation receptor tyrosine kinase (RTK) inhibitor with a target profile similar to that of imatinib (Gleevec®), but increased potency, decreased toxicity and greater cellular and tissue penetration. Nilotinib targets not only the BCR-ABL oncoprotein, but also platelet-derived growth factor (PDGF) receptor signalling. In this preclinical study, the human NF2-null schwannoma cell line HEI-193 subjected to nilotinib inhibition demonstrated decreased viability, proliferation and anchorage-independent growth, and increased apoptosis. A daily dose of nilotinib for 5 days inhibited HEI-I93 proliferation at a clinically-relevant concentration in a dose-dependent manner (IC(50) 3-5 µmol/L) in PDGF-stimulated cells. These anti-tumorigenic effects of nilotinib were correlated to inhibited activation of PDGFR-α and PDGFR-β and major downstream signalling pathways. These experiments support a therapeutic potential for Nilotinib in VS.


The somatic genomic landscape of glioblastoma.

  • Cameron W Brennan‎ et al.
  • Cell‎
  • 2013‎

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme.

  • Amparo Wolf‎ et al.
  • Neurobiology of disease‎
  • 2011‎

Highly proliferating cells, normal or transformed, undergo aerobic glycolysis whereby glucose is metabolized to lactate rather than by oxidative metabolism, even in the presence of oxygen. This metabolic adaptation provides a survival advantage and facilitates synthesis of biosynthetic precursors required for continued cellular proliferation. An important mediator of aerobic glycolysis is our demonstration that in malignant gliomas there is over-expression of the glycolytic enzyme hexokinase 2 (HK2), phosphorylating glucose as the first step of the glycolytic pathway. In contrast, normal brain preferentially expresses HK1 and undergoes oxidative glucose metabolism. In this study, we examine whether this switch in HK isoform also occurs in the developing embryo and central nervous system (CNS). Bioinformatic analysis of available microarray data, including that of The Cancer Genome Atlas, demonstrated a ~17% overlap in metabolic-related genes in blastocyst stage embryo and human GBM tissue, including upregulation of HK2 and downregulation of HK1. Quantitative RT-PCR on mouse brains isolated at different embryonic and postnatal development time-points demonstrated HK2 expression was highest in the early embryo, while HK1 expression increased with CNS maturation. The downstream glycolytic enzymes PKM2 and LDHA had similar temporal profiles as HK2. Expression of the HK2 isoform was due in part to epigenetic regulation of HK2. In support, adult normal human brain and the few human GBM cell lines with low HK2 expression had methylation of CpG islands within intron 1 of HK2. In contrast, developing human fetal brain and GBM tissue expressing HK2 demonstrated significantly lower percent methylation. Furthermore, treatment of GBM cells lacking HK2 with 5-aza-2-deoxycytidine restored HK2 transcript expression. Overall, our results demonstrate that proliferative states including the developing embryo and malignant gliomas, which rely on aerobic glycolysis, preferentially express the HK2 isoform, found to be regulated in part epigenetically.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: