Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan.

  • Darren J Baker‎ et al.
  • Nature‎
  • 2016‎

Cellular senescence, a stress-induced irreversible growth arrest often characterized by expression of p16(Ink4a) (encoded by the Ink4a/Arf locus, also known as Cdkn2a) and a distinctive secretory phenotype, prevents the proliferation of preneoplastic cells and has beneficial roles in tissue remodelling during embryogenesis and wound healing. Senescent cells accumulate in various tissues and organs over time, and have been speculated to have a role in ageing. To explore the physiological relevance and consequences of naturally occurring senescent cells, here we use a previously established transgene, INK-ATTAC, to induce apoptosis in p16(Ink4a)-expressing cells of wild-type mice by injection of AP20187 twice a week starting at one year of age. We show that compared to vehicle alone, AP20187 treatment extended median lifespan in both male and female mice of two distinct genetic backgrounds. The clearance of p16(Ink4a)-positive cells delayed tumorigenesis and attenuated age-related deterioration of several organs without apparent side effects, including kidney, heart and fat, where clearance preserved the functionality of glomeruli, cardio-protective KATP channels and adipocytes, respectively. Thus, p16(Ink4a)-positive cells that accumulate during adulthood negatively influence lifespan and promote age-dependent changes in several organs, and their therapeutic removal may be an attractive approach to extend healthy lifespan.


Zileuton, 5-lipoxygenase inhibitor, acts as a chemopreventive agent in intestinal polyposis, by modulating polyp and systemic inflammation.

  • Elias Gounaris‎ et al.
  • PloS one‎
  • 2015‎

Leukotrienes and prostaglandins, products of arachidonic acid metabolism, sustain both systemic and lesion-localized inflammation. Tumor-associated Inflammation can also contribute to the pathogenesis of colon cancer. Patients with inflammatory bowel disease (IBD) have increased risk of developing colon cancer. The levels of 5-lipoxygenase (5-LO), the key enzyme for leukotrienes production, are increased in colon cancer specimens and colonic dysplastic lesions. Here we report that Zileuton, a specific 5-LO inhibitor, can prevent polyp formation by efficiently reducing the tumor-associated and systemic inflammation in APCΔ468 mice.


Regulation of COX2 expression in mouse mammary tumor cells controls bone metastasis and PGE2-induction of regulatory T cell migration.

  • John Karavitis‎ et al.
  • PloS one‎
  • 2012‎

The targeting of the immune system through immunotherapies to prevent tumor tolerance and immune suppression are at the front lines of breast cancer treatment and research. Human and laboratory studies have attributed breast cancer progression and metastasis to secondary organs such as the bone, to a number of factors, including elevated levels of prostaglandin E2 (PGE2) and the enzyme responsible for its production, cyclooxygenase 2 (COX2). Due to the strong connection of COX2 with immune function, we focused on understanding how variance in COX2 expression manipulates the immune profile in a syngeneic, and immune-competent, mouse model of breast cancer. Though there have been correlative findings linking elevated levels of COX2 and Tregs in other cancer models, we sought to elucidate the mechanisms by which these immuno-suppressive cells are recruited to breast tumor and the means by which they promote tumor tolerance.


Light/Dark Shifting Promotes Alcohol-Induced Colon Carcinogenesis: Possible Role of Intestinal Inflammatory Milieu and Microbiota.

  • Faraz Bishehsari‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Colorectal cancer (CRC) is associated with the modern lifestyle. Chronic alcohol consumption-a frequent habit of majority of modern societies-increases the risk of CRC. Our group showed that chronic alcohol consumption increases polyposis in a mouse mode of CRC. Here we assess the effect of circadian disruption-another modern life style habit-in promoting alcohol-associated CRC.


Progressive Fibrosis: A Progesterone- and KLF11-Mediated Sexually Dimorphic Female Response.

  • Chandra C Shenoy‎ et al.
  • Endocrinology‎
  • 2017‎

Progressive scarring is ubiquitous postoperatively and in an array of chronic systemic diseases. Recent studies indicate that such scarring has a high female propensity; females are also almost exclusively affected by endometriosis, a common sex steroid-dependent fibrotic disease. Endometriosis-related fibrosis is regulated epigenetically through transcription factor Krüppel-like factor 11 (KLF11). In response to surgical induction of endometriosis, Klf11-/- female mice develop significant fibrosis in contrast to wild-type mice. We therefore hypothesized that female fibrotic predilection was mediated by differential sex steroid regulation of KLF11/collagen 1a1 signaling and investigated the fibrotic response in wild-type and Klf11-/- male and female animals using a sterile peritonitis model. Fibrosis selectively developed in Klf11-/- females. Fibrosis in these animals was almost completely abrogated by ovariectomy. Ovariectomized animals were selectively supplemented with estradiol, medroxyprogesterone acetate (MPA), or dihydrotestosterone; fibrosis was only observed in mice exposed to MPA. Fibrosis therefore selectively developed in Klf11-/- female mice in response to physiological or pharmacological progesterone. The fibrotic response in these animals was also mitigated in response to antiprogestin therapy. Profibrotic gene expression was activated in a primary human peritoneal cell line in response to KLF11 short hairpin RNA and MPA but not estradiol. KLF11/collagen 1a1 signaling previously shown to be linked to fibrosis was thus selectively dysregulated in MPA-treated cells. Our in vivo and in vitro findings in an animal model and human cells, respectively, suggest that progressive fibrotic scarring is a sexually dimorphic response irrespective of etiology; moreover, it is responsive to novel, individualized therapeutic intervention.


Mast cells promote small bowel cancer in a tumor stage-specific and cytokine-dependent manner.

  • Abdulrahman M Saadalla‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Mast cells (MCs) are tissue resident sentinels that mature and orchestrate inflammation in response to infection and allergy. While they are also frequently observed in tumors, the contribution of MCs to carcinogenesis remains unclear. Here, we show that sequential oncogenic events in gut epithelia expand different types of MCs in a temporal-, spatial-, and cytokine-dependent manner. The first wave of MCs expands focally in benign adenomatous polyps, which have elevated levels of IL-10, IL-13, and IL-33, and are rich in type-2 innate lymphoid cells (ILC2s). These vanguard MCs adhere to the transformed epithelial cells and express murine mast cell protease 2 (mMCP2; a typical mucosal MC protease) and, to a lesser extent, the connective tissue mast cell (CTMC) protease mMCP6. Persistence of MCs is strictly dependent on T cell-derived IL-10, and their loss in the absence of IL-10-expressing T cells markedly delays small bowel (SB) polyposis. MCs expand profusely in polyposis-prone mice when T cells overexpress IL-10. The frequency of polyp-associated MCs is unaltered in response to broad-spectrum antibiotics, arguing against a microbial component driving their recruitment. Intriguingly, when polyps become invasive, a second wave of mMCP5+/mMCP6+ CTMCs expands in the tumor stroma and at invasive tumor borders. Ablation of mMCP6 expression attenuates polyposis, but invasive properties of the remaining lesions remain intact. Our findings argue for a multistep process in SB carcinogenesis in which distinct MC subsets, and their elaborated proteases, guide disease progression.


Cell Intrinsic Deregulated ß-Catenin Signaling Promotes Expansion of Bone Marrow Derived Connective Tissue Type Mast Cells, Systemic Inflammation, and Colon Cancer.

  • Abdulrahman Saadalla‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Mast cells constitutively express ß-catenin and expand in solid tumors such as colon and skin cancer. However, the role of ß-catenin signaling in mast cells and the cause or effect of mast cell expansion and tumor growth has yet to be established. In earlier studies we used mast cell depletion and protease staining approaches, to provide evidence for a causative role of mast cells in small bowel polyposis, and related specific phenotypes and distributions of tumor infiltrating mast cells to stages of tumor growth. Here we report that, stabilization of ß-catenin expands mast cells to promote high incidence of colon polyposis and infrequent small bowel polyps and skin cancer. Expression of a dominant acting ß-catenin in mast cells (5CreCAT) stimulated maturation and expression of granule stored proteases. Both mucosal and connective tissue type mast cells accumulated in colonic small bowel polyps independent of gender, and mice developed chronic systemic inflammation with splenomegaly. Reconstitution of polyposis-prone mice with bone marrow from 5CreCAT mice resulted in focal expansion of connective tissue like mast cells, which are normally rare in benign polyps and characteristically expand during adenoma-to-carcinoma transition. Our findings highlight a hitherto unknown contribution of ß-catenin signaling in mast cells to their maturation and to increased risk of colon cancer.


ST8Sia6 Promotes Tumor Growth in Mice by Inhibiting Immune Responses.

  • David J Friedman‎ et al.
  • Cancer immunology research‎
  • 2021‎

Many tumors exhibit increased incorporation of sialic acids into cell-surface glycans, which impact the tumor microenvironment. Sialic acid immunoglobulin-like lectins (Siglec) are receptors that recognize sialic acids and modulate immune responses, including responses to tumors. However, the roles of individual sialyltransferases in tumorigenesis and tumor growth are not well understood. Here, we examined the sialyltransferase ST8Sia6, which generated α2,8-linked disialic acids that bind to murine Siglec-E and human Siglec-7 and -9. Increased ST8Sia6 expression was found on many human tumors and associated with decreased survival in several cancers, including colon cancer. Because of this, we engineered MC38 and B16-F10 tumor lines to express ST8Sia6. ST8Sia6-expressing MC38 and B16-F10 tumors exhibited faster growth and led to decreased survival, which required host Siglec-E. ST8Sia6 expression on tumors also altered macrophage polarization toward M2, including upregulation of the immune modulator arginase, which also required Siglec-E. ST8Sia6 also accelerated tumorigenesis in a genetically engineered, spontaneous murine model of colon cancer, decreasing survival from approximately 6 months to 67 days. Thus, ST8Sia6 expression on tumors inhibits antitumor immune responses to accelerate tumor growth.


MRI-monitored intra-tumoral injection of iron-oxide labeled Clostridium novyi-NT anaerobes in pancreatic carcinoma mouse model.

  • Linfeng Zheng‎ et al.
  • PloS one‎
  • 2014‎

To validate the feasibility of labeling Clostridium novyi-NT (C.novyi-NT) anaerobes with iron-oxide nanoparticles for magnetic resonance imaging (MRI) and demonstrate the potential to use MRI to visualize intra-tumoral delivery of these iron-oxide labeled C.novyi-NT during percutaneous injection procedures.


Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1.

  • Xiaoyu Li‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

Mutations resulting in overexpression of intracellular Notch1 (ICN1) are frequently observed in human T cell acute lymphoblastic leukemia (T-ALL). We have determined the consequences of ICN1 overexpression from retroviral vectors introduced into bone marrow cells. Early consequences are the generation of polyclonal nontumorigenic CD4(+)8(+) T cell receptor (TCR)-alphabeta(+) cells that do not qualify as tumor precursors despite the observation that they overexpress Notch 1 and c-Myc and degrade the tumor suppressor E2A by posttranslational modification. The first tumorigenic cells are detected among more immature CD4(-)8(+)TCR-alphabeta(-) cells that give rise to monoclonal tumors with a single, unique TCR-beta chain and diverse TCR-alpha chains, pinpointing malignant transformation to a stage after pre-TCR signaling and before completion of TCR-alpha rearrangement. In T-ALL, E2A deficiency is accompanied by further transcriptional up-regulation of c-Myc and concomitant dysregulation of the c-Myc-p53 axis at the transcriptional level. Even though the tumors consist of phenotypically heterogeneous cells, no evidence for tumor stem cells was found. As judged by array-based comparative genomic hybridization (array CGH) and spectral karyotype (SKY) analysis, none of the tumors arise because of genomic instability.


Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation.

  • Thorsten R Mempel‎ et al.
  • Immunity‎
  • 2006‎

Mechanisms of dominant tolerance have evolved within the mammalian immune system to prevent inappropriate immune responses. CD4(+)CD25(+) regulatory T (T(reg)) cells have emerged as central constituents of this suppressive activity. By using multiphoton intravital microscopy in lymph nodes (LNs) of anesthetized mice, we have analyzed how cytotoxic T lymphocytes (CTLs) interact with antigen-presenting target cells in the presence or absence of activated T(reg) cells. Nonregulated CTLs killed their targets at a 6.6-fold faster rate than regulated CTLs. In spite of this compromised effector activity, regulated CTLs exhibited no defect in proliferation, induction of cytotoxic effector molecules and secretory granules, in situ motility, or ability to form antigen-dependent conjugates with target cells. Only granule exocytosis by CTLs was markedly impaired in the presence of T(reg) cells. This selective form of regulation did not require prolonged contact between CTLs and T(reg) cells but depended on CTL responsiveness to transforming growth factor-beta. CTLs quickly regained full killing capacity in LNs upon selective removal of T(reg) cells. Thus, T(reg) cells reversibly suppress CTL-mediated immunity by allowing acquisition of full effector potential but withholding the license to kill.


KLF10 Mediated Epigenetic Dysregulation of Epithelial CD40/CD154 Promotes Endometriosis.

  • Abigail A Delaney‎ et al.
  • Biology of reproduction‎
  • 2016‎

Endometriosis is a highly prevalent, chronic, heterogeneous, fibro-inflammatory disease that remains recalcitrant to conventional therapy. We previously showed that loss of KLF11, a transcription factor implicated in uterine disease, results in progression of endometriosis. Despite extensive homology, co-expression, and human disease association, loss of the paralog Klf10 causes a unique inflammatory, cystic endometriosis phenotype in contrast to fibrotic progression seen with loss of Klf11. We identify here for the first time a novel role for KLF10 in endometriosis. In an animal endometriosis model, unlike wild-type controls, Klf10(-/-) animals developed cystic lesions with massive immune infiltrate and minimal peri-lesional fibrosis. The Klf10(-/-) disease progression phenotype also contrasted with prolific fibrosis and minimal immune cell infiltration seen in Klf11(-/-) animals. We further found that lesion genotype rather than that of the host determined each unique disease progression phenotype. Mechanistically, KLF10 regulated CD40/CD154-mediated immune pathways. Both inflammatory as well as fibrotic phenotypes are the commonest clinical manifestations in chronic fibro-inflammatory diseases such as endometriosis. The complementary, paralogous Klf10 and Klf11 models therefore offer novel insights into the mechanisms of inflammation and fibrosis in a disease-relevant context. Our data suggests that divergence in underlying gene dysregulation critically determines disease-phenotype predominance rather than the conventional paradigm of inflammation being precedent to fibrotic scarring. Heterogeneity in clinical progression and treatment response are thus likely from disparate gene regulation profiles. Characterization of disease phenotype-associated gene dysregulation offers novel approaches for developing targeted, individualized therapy for recurrent and recalcitrant chronic disease.


Loss of TGFβ signaling promotes colon cancer progression and tumor-associated inflammation.

  • Daniel R Principe‎ et al.
  • Oncotarget‎
  • 2017‎

TGFβ has both tumor suppressive and tumor promoting effects in colon cancer. Also, TGFβ can affect the extent and composition of inflammatory cells present in tumors, contextually promoting and inhibiting inflammation. While colon tumors display intratumoral inflammation, the contributions of TGFβ to this process are poorly understood. In human patients, we found that epithelial loss of TGFβ signaling was associated with increased inflammatory burden; yet overexpression of TGFβ was also associated with increased inflammation. These findings were recapitulated in mutant APC models of murine tumorigenesis, where epithelial truncation of TGFBR2 led to lethal inflammatory disease and invasive colon cancer, mediated by IL8 and TGFβ1. Interestingly, mutant APC mice with global suppression of TGFβ signals displayed an intermediate phenotype, presenting with an overall increase in IL8-mediated inflammation and accelerated tumor formation, yet with a longer latency to the onset of disease observed in mice with epithelial TGFBR-deficiency. These results suggest that the loss of TGFβ signaling, particularly in colon epithelial cells, elicits a strong inflammatory response and promotes tumor progression. This implies that treating colon cancer patients with TGFβ inhibitors may result in a worse outcome by enhancing inflammatory responses.


Colonic Epithelial Circadian Disruption Worsens Dextran Sulfate Sodium-Induced Colitis.

  • Sarah B Jochum‎ et al.
  • Inflammatory bowel diseases‎
  • 2023‎

Disruption of central circadian rhythms likely mediated by changes in microbiota and a decrease in gut-derived metabolites like short chain fatty acids (SCFAs) negatively impacts colonic barrier homeostasis. We aimed to explore the effects of isolated peripheral colonic circadian disruption on the colonic barrier in a mouse model of colitis and explore the mechanisms, including intestinal microbiota community structure and function.


Epigenetic Therapy: Novel Translational Implications for Arrest of Environmental Dioxin-Induced Disease in Females.

  • Zaraq Khan‎ et al.
  • Endocrinology‎
  • 2018‎

Increased toxicant exposure and resultant environmentally induced diseases are a tradeoff of industrial productivity. Dioxin [2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD)], a ubiquitous byproduct, is associated with a spectrum of diseases including endometriosis, a common, chronic disease in women. TCDD activates cytochrome (CYP) p450 metabolic enzymes that alter organ function to cause disease. In contrast, the transcription factor, Krüppel-like factor (KLF) 11, represses these enzymes via epigenetic mechanisms. In this study, we characterized these opposing mechanisms in vitro and in vivo as well as determining potential translational implications of epigenetic inhibitor therapy. KLF11 antagonized TCDD-mediated activation of CYP3A4 gene expression and function in endometrial cells. The repression was pharmacologically replicated by selective use of an epigenetic histone acetyltransferase inhibitor (HATI). We further showed phenotypic relevance of this mechanism using an animal model for endometriosis. Fibrotic extent in TCDD-exposed wild-type animals was similar to that previously observed in Klf11-/- animals. When TCDD-exposed animals were treated with a HATI, Cyp3 messenger RNA levels and protein expression decreased along with disease progression. Fibrotic progression is ubiquitous in environmentally induced chronic, untreatable diseases; this report shows that relentless disease progression can be arrested through targeted epigenetic modulation of protective mechanisms.


Loss of symbiotic and increase of virulent bacteria through microbial networks in Lynch syndrome colon carcinogenesis.

  • Mohammad Sadeghi‎ et al.
  • Frontiers in oncology‎
  • 2023‎

Through a pilot study, we performed whole gut metagenomic analysis in 17 Lynch syndrome (LS) families, including colorectal cancer (CRC) patients and their healthy first-degree relatives. In a second asymptomatic LS cohort (n=150) undergoing colonoscopy-screening program, individuals with early precancerous lesions were compared to those with a normal colonoscopy. Since bacteria are organized into different networks within the microbiota, we compared related network structures in patients and controls.


Abnormal Eating Patterns Cause Circadian Disruption and Promote Alcohol-Associated Colon Carcinogenesis.

  • Faraz Bishehsari‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2020‎

Alcohol intake with circadian rhythm disruption (CRD) increases colon cancer risk. We hypothesized that eating during or around physiologic rest time, a common habit in modern society, causes CRD and investigated the mechanisms by which it promotes alcohol-associated colon carcinogenesis.


TCF-1 controls Treg cell functions that regulate inflammation, CD8+ T cell cytotoxicity and severity of colon cancer.

  • Abu Osman‎ et al.
  • Nature immunology‎
  • 2021‎

The transcription factor TCF-1 is essential for the development and function of regulatory T (Treg) cells; however, its function is poorly understood. Here, we show that TCF-1 primarily suppresses transcription of genes that are co-bound by Foxp3. Single-cell RNA-sequencing analysis identified effector memory T cells and central memory Treg cells with differential expression of Klf2 and memory and activation markers. TCF-1 deficiency did not change the core Treg cell transcriptional signature, but promoted alternative signaling pathways whereby Treg cells became activated and gained gut-homing properties and characteristics of the TH17 subset of helper T cells. TCF-1-deficient Treg cells strongly suppressed T cell proliferation and cytotoxicity, but were compromised in controlling CD4+ T cell polarization and inflammation. In mice with polyposis, Treg cell-specific TCF-1 deficiency promoted tumor growth. Consistently, tumor-infiltrating Treg cells of patients with colorectal cancer showed lower TCF-1 expression and increased TH17 expression signatures compared to adjacent normal tissue and circulating T cells. Thus, Treg cell-specific TCF-1 expression differentially regulates TH17-mediated inflammation and T cell cytotoxicity, and can determine colorectal cancer outcome.


KLF11 deficiency enhances chemokine generation and fibrosis in murine unilateral ureteral obstruction.

  • Silvana B De Lorenzo‎ et al.
  • PloS one‎
  • 2022‎

Progression of virtually all forms of chronic kidney disease (CKD) is associated with activation of pro-inflammatory and pro-fibrotic signaling pathways. Despite extensive research, progress in identifying therapeutic targets to arrest or slow progression of CKD has been limited by incomplete understanding of basic mechanisms underlying renal inflammation and fibrosis in CKD. Recent studies have identified Kruppel-like transcription factors that have been shown to play critical roles in renal development, homeostasis, and response to injury. Although KLF11 deficiency has been shown to increase collagen production in vitro and tissue fibrosis in other organs, no previous study has linked KLF11 to the development of CKD. We sought to test the hypothesis that KLF11 deficiency promotes CKD through upregulation of pro-inflammatory and pro-fibrogenic signaling pathways in murine unilateral ureteral obstruction (UUO), a well-established model of renal fibrosis. We found that KLF11-deficiency exacerbates renal injury in the UUO model through activation of the TGF-β/SMAD signaling pathway and through activation of several pro-inflammatory chemokine signaling pathways. Based on these considerations, we conclude that agents increase KLF11 expression may provide novel therapeutic targets to slow the progression of CKD.


Kidney-resident macrophages promote a proangiogenic environment in the normal and chronically ischemic mouse kidney.

  • Amrutesh S Puranik‎ et al.
  • Scientific reports‎
  • 2018‎

Renal artery stenosis (RAS) caused by narrowing of arteries is characterized by microvascular damage. Macrophages are implicated in repair and injury, but the specific populations responsible for these divergent roles have not been identified. Here, we characterized murine kidney F4/80+CD64+ macrophages in three transcriptionally unique populations. Using fate-mapping and parabiosis studies, we demonstrate that CD11b/cint are long-lived kidney-resident (KRM) while CD11chiMϕ, CD11cloMϕ are monocyte-derived macrophages. In a murine model of RAS, KRM self-renewed, while CD11chiMϕ and CD11cloMϕ increased significantly, which was associated with loss of peritubular capillaries. Replacing the native KRM with monocyte-derived KRM using liposomal clodronate and bone marrow transplantation followed by RAS, amplified loss of peritubular capillaries. To further elucidate the nature of interactions between KRM and peritubular endothelial cells, we performed RNA-sequencing on flow-sorted macrophages from Sham and RAS kidneys. KRM showed a prominent activation pattern in RAS with significant enrichment in reparative pathways, like angiogenesis and wound healing. In culture, KRM increased proliferation of renal peritubular endothelial cells implying direct pro-angiogenic properties. Human homologs of KRM identified as CD11bintCD11cintCD68+ increased in post-stenotic kidney biopsies from RAS patients compared to healthy human kidneys, and inversely correlated to kidney function. Thus, KRM may play protective roles in stenotic kidney injury through expansion and upregulation of pro-angiogenic pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: