Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

The crystal structure of Toxoplasma gondii pyruvate kinase 1.

  • Rebecca Bakszt‎ et al.
  • PloS one‎
  • 2010‎

Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population.


Discovery of a chemical probe for PRDM9.

  • Abdellah Allali-Hassani‎ et al.
  • Nature communications‎
  • 2019‎

PRDM9 is a PR domain containing protein which trimethylates histone 3 on lysine 4 and 36. Its normal expression is restricted to germ cells and attenuation of its activity results in altered meiotic gene transcription, impairment of double-stranded breaks and pairing between homologous chromosomes. There is growing evidence for a role of aberrant expression of PRDM9 in oncogenesis and genome instability. Here we report the discovery of MRK-740, a potent (IC50: 80 ± 16 nM), selective and cell-active PRDM9 inhibitor (Chemical Probe). MRK-740 binds in the substrate-binding pocket, with unusually extensive interactions with the cofactor S-adenosylmethionine (SAM), conferring SAM-dependent substrate-competitive inhibition. In cells, MRK-740 specifically and directly inhibits H3K4 methylation at endogenous PRDM9 target loci, whereas the closely related inactive control compound, MRK-740-NC, does not. The discovery of MRK-740 as a chemical probe for the PRDM subfamily of methyltransferases highlights the potential for exploiting SAM in targeting SAM-dependent methyltransferases.


Structural studies of a four-MBT repeat protein MBTD1.

  • Jitka Eryilmaz‎ et al.
  • PloS one‎
  • 2009‎

The Polycomb group (PcG) of proteins is a family of important developmental regulators. The respective members function as large protein complexes involved in establishment and maintenance of transcriptional repression of developmental control genes. MBTD1, Malignant Brain Tumor domain-containing protein 1, is one such PcG protein. MBTD1 contains four MBT repeats.


A chemical probe targeting the PWWP domain alters NSD2 nucleolar localization.

  • David Dilworth‎ et al.
  • Nature chemical biology‎
  • 2022‎

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


The Cryptosporidium parvum kinome.

  • Jennifer D Artz‎ et al.
  • BMC genomics‎
  • 2011‎

Hundreds of millions of people are infected with cryptosporidiosis annually, with immunocompromised individuals suffering debilitating symptoms and children in socioeconomically challenged regions at risk of repeated infections. There is currently no effective drug available. In order to facilitate the pursuit of anti-cryptosporidiosis targets and compounds, our study spans the classification of the Cryptosporidium parvum kinome and the structural and biochemical characterization of representatives from the CDPK family and a MAP kinase.


An allosteric inhibitor of protein arginine methyltransferase 3.

  • Alena Siarheyeva‎ et al.
  • Structure (London, England : 1993)‎
  • 2012‎

PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in vitro. Here, we report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC50 value of 2.5 μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets.


Small-molecule inhibition of MLL activity by disruption of its interaction with WDR5.

  • Guillermo Senisterra‎ et al.
  • The Biochemical journal‎
  • 2013‎

WDR5 (WD40 repeat protein 5) is an essential component of the human trithorax-like family of SET1 [Su(var)3-9 enhancer-of-zeste trithorax 1] methyltransferase complexes that carry out trimethylation of histone 3 Lys4 (H3K4me3), play key roles in development and are abnormally expressed in many cancers. In the present study, we show that the interaction between WDR5 and peptides from the catalytic domain of MLL (mixed-lineage leukaemia protein) (KMT2) can be antagonized with a small molecule. Structural and biophysical analysis show that this antagonist binds in the WDR5 peptide-binding pocket with a Kd of 450 nM and inhibits the catalytic activity of the MLL core complex in vitro. The degree of inhibition was enhanced at lower protein concentrations consistent with a role for WDR5 in directly stabilizing the MLL multiprotein complex. Our data demonstrate inhibition of an important protein-protein interaction and form the basis for further development of inhibitors of WDR5-dependent enzymes implicated in MLL-rearranged leukaemias or other cancers.


A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells.

  • Masoud Vedadi‎ et al.
  • Nature chemical biology‎
  • 2011‎

Protein lysine methyltransferases G9a and GLP modulate the transcriptional repression of a variety of genes via dimethylation of Lys9 on histone H3 (H3K9me2) as well as dimethylation of non-histone targets. Here we report the discovery of UNC0638, an inhibitor of G9a and GLP with excellent potency and selectivity over a wide range of epigenetic and non-epigenetic targets. UNC0638 treatment of a variety of cell lines resulted in lower global H3K9me2 levels, equivalent to levels observed for small hairpin RNA knockdown of G9a and GLP with the functional potency of UNC0638 being well separated from its toxicity. UNC0638 markedly reduced the clonogenicity of MCF7 cells, reduced the abundance of H3K9me2 marks at promoters of known G9a-regulated endogenous genes and disproportionately affected several genomic loci encoding microRNAs. In mouse embryonic stem cells, UNC0638 reactivated G9a-silenced genes and a retroviral reporter gene in a concentration-dependent manner without promoting differentiation.


Fragment-based discovery of a chemical probe for the PWWP1 domain of NSD3.

  • Jark Böttcher‎ et al.
  • Nature chemical biology‎
  • 2019‎

Here, we report the fragment-based discovery of BI-9321, a potent, selective and cellular active antagonist of the NSD3-PWWP1 domain. The human NSD3 protein is encoded by the WHSC1L1 gene located in the 8p11-p12 amplicon, frequently amplified in breast and squamous lung cancer. Recently, it was demonstrated that the PWWP1 domain of NSD3 is required for the viability of acute myeloid leukemia cells. To further elucidate the relevance of NSD3 in cancer biology, we developed a chemical probe, BI-9321, targeting the methyl-lysine binding site of the PWWP1 domain with sub-micromolar in vitro activity and cellular target engagement at 1 µM. As a single agent, BI-9321 downregulates Myc messenger RNA expression and reduces proliferation in MOLM-13 cells. This first-in-class chemical probe BI-9321, together with the negative control BI-9466, will greatly facilitate the elucidation of the underexplored biological function of PWWP domains.


LLY-507, a Cell-active, Potent, and Selective Inhibitor of Protein-lysine Methyltransferase SMYD2.

  • Hannah Nguyen‎ et al.
  • The Journal of biological chemistry‎
  • 2015‎

SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.


Structure and function of the PLAA/Ufd3-p97/Cdc48 complex.

  • Liyan Qiu‎ et al.
  • The Journal of biological chemistry‎
  • 2010‎

PLAA (ortholog of yeast Doa1/Ufd3, also know as human PLAP or phospholipase A2-activating protein) has been implicated in a variety of disparate biological processes that involve the ubiquitin system. It is linked to the maintenance of ubiquitin levels, but the mechanism by which it accomplishes this is unclear. The C-terminal PUL (PLAP, Ufd3p, and Lub1p) domain of PLAA binds p97, an AAA ATPase, which among other functions helps transfer ubiquitinated proteins to the proteasome for degradation. In yeast, loss of Doa1 is suppressed by altering p97/Cdc48 function indicating that physical interaction between PLAA and p97 is functionally important. Although the overall regions of interaction between these proteins are known, the structural basis has been unavailable. We solved the high resolution crystal structure of the p97-PLAA complex showing that the PUL domain forms a 6-mer Armadillo-containing domain. Its N-terminal extension folds back onto the inner curvature forming a deep ridge that is positively charged with residues that are phylogenetically conserved. The C terminus of p97 binds in this ridge, where the side chain of p97-Tyr(805), implicated in phosphorylation-dependent regulation, is buried. Expressed in doa1Delta null cells, point mutants of the yeast ortholog Doa1 that disrupt this interaction display slightly reduced ubiquitin levels, but unlike doa1Delta null cells, showed only some of the growth phenotypes. These data suggest that the p97-PLAA interaction is important for a subset of PLAA-dependent biological processes and provides a framework to better understand the role of these complex molecules in the ubiquitin system.


Enzymatic nucleosome acetylation selectively affects activity of histone methyltransferases in vitro.

  • Viacheslav V Trush‎ et al.
  • Biochimica et biophysica acta. Gene regulatory mechanisms‎
  • 2022‎

Posttranslational modification of histones plays a critical role in regulation of gene expression. These modifications include methylation and acetylation that work in combination to establish transcriptionally active or repressive chromatin states. Histone methyltransferases (HMTs) often have variable levels of activity in vitro depending on the form of substrate used. For example, certain HMTs prefer nucleosomes extracted from human or chicken cells as substrate compared to recombinant nucleosomes reconstituted from bacterially produced histones. We considered that pre-existing histone modifications in the extracted nucleosomes can affect the efficiency of catalysis by HMTs, suggesting functional cross-talk between histone-modifying enzymes within a complex network of interdependent activities. Here we systematically investigated the effect of nucleosome acetylation by EP300, GCN5L2 (KAT2A) and MYST1 (MOF) on histone 3 lysine 4 (H3K4), H3K9 and H4K20 methylation of nucleosomes by nine HMTs (MLL1, MLL3, SET1B, G9a, SETDB1, SUV39H1, SUV39H2, SUV420H1 and SUV420H2) in vitro. Our full kinetic characterization data indicate that site-specific acetylation of nucleosomal histones by specific acetyltransferases can create nucleosomes that are better substrates for specific HMTs. This includes significant increases in catalytic efficiencies of SETDB1, G9a and SUV420H2 after nucleosome acetylation in vitro.


Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation.

  • Chuanbing Bian‎ et al.
  • The EMBO journal‎
  • 2011‎

The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is an important chromatin modifying complex that can both acetylate and deubiquitinate histones. Sgf29 is a novel component of the SAGA complex. Here, we report the crystal structures of the tandem Tudor domains of Saccharomyces cerevisiae and human Sgf29 and their complexes with H3K4me2 and H3K4me3 peptides, respectively, and show that Sgf29 selectively binds H3K4me2/3 marks. Our crystal structures reveal that Sgf29 harbours unique tandem Tudor domains in its C-terminus. The tandem Tudor domains in Sgf29 tightly pack against each other face-to-face with each Tudor domain harbouring a negatively charged pocket accommodating the first residue alanine and methylated K4 residue of histone H3, respectively. The H3A1 and K4me3 binding pockets and the limited binding cleft length between these two binding pockets are the structural determinants in conferring the ability of Sgf29 to selectively recognize H3K4me2/3. Our in vitro and in vivo functional assays show that Sgf29 recognizes methylated H3K4 to recruit the SAGA complex to its targets sites and mediates histone H3 acetylation, underscoring the importance of Sgf29 in gene regulation.


Structural biology of human H3K9 methyltransferases.

  • Hong Wu‎ et al.
  • PloS one‎
  • 2010‎

SET domain methyltransferases deposit methyl marks on specific histone tail lysine residues and play a major role in epigenetic regulation of gene transcription. We solved the structures of the catalytic domains of GLP, G9a, Suv39H2 and PRDM2, four of the eight known human H3K9 methyltransferases in their apo conformation or in complex with the methyl donating cofactor, and peptide substrates. We analyzed the structural determinants for methylation state specificity, and designed a G9a mutant able to tri-methylate H3K9. We show that the I-SET domain acts as a rigid docking platform, while induced-fit of the Post-SET domain is necessary to achieve a catalytically competent conformation. We also propose a model where long-range electrostatics bring enzyme and histone substrate together, while the presence of an arginine upstream of the target lysine is critical for binding and specificity.


Biophysical characterization of recombinant proteins: a key to higher structural genomics success.

  • Masoud Vedadi‎ et al.
  • Journal of structural biology‎
  • 2010‎

Hundreds of genomes have been successfully sequenced to date, and the data are publicly available. At the same time, the advances in large-scale expression and purification of recombinant proteins have paved the way for structural genomics efforts. Frequently, however, little is known about newly expressed proteins calling for large-scale protein characterization to better understand their biochemical roles and to enable structure-function relationship studies. In the Structural Genomics Consortium (SGC), we have established a platform to characterize large numbers of purified proteins. This includes screening for ligands, enzyme assays, peptide arrays and peptide displacement in a 384-well format. In this review, we describe this platform in more detail and report on how our approach significantly increases the success rate for structure determination. Coupled with high-resolution X-ray crystallography and structure-guided methods, this platform can also be used toward the development of chemical probes through screening families of proteins against a variety of chemical series and focused chemical libraries.


Crystal structures of human choline kinase isoforms in complex with hemicholinium-3: single amino acid near the active site influences inhibitor sensitivity.

  • Bum Soo Hong‎ et al.
  • The Journal of biological chemistry‎
  • 2010‎

Human choline kinase (ChoK) catalyzes the first reaction in phosphatidylcholine biosynthesis and exists as ChoKalpha (alpha1 and alpha2) and ChoKbeta isoforms. Recent studies suggest that ChoK is implicated in tumorigenesis and emerging as an attractive target for anticancer chemotherapy. To extend our understanding of the molecular mechanism of ChoK inhibition, we have determined the high resolution x-ray structures of the ChoKalpha1 and ChoKbeta isoforms in complex with hemicholinium-3 (HC-3), a known inhibitor of ChoK. In both structures, HC-3 bound at the conserved hydrophobic groove on the C-terminal lobe. One of the HC-3 oxazinium rings complexed with ChoKalpha1 occupied the choline-binding pocket, providing a structural explanation for its inhibitory action. Interestingly, the HC-3 molecule co-crystallized with ChoKbeta was phosphorylated in the choline binding site. This phosphorylation, albeit occurring at a very slow rate, was confirmed experimentally by mass spectroscopy and radioactive assays. Detailed kinetic studies revealed that HC-3 is a much more potent inhibitor for ChoKalpha isoforms (alpha1 and alpha2) compared with ChoKbeta. Mutational studies based on the structures of both inhibitor-bound ChoK complexes demonstrated that Leu-401 of ChoKalpha2 (equivalent to Leu-419 of ChoKalpha1), or the corresponding residue Phe-352 of ChoKbeta, which is one of the hydrophobic residues neighboring the active site, influences the plasticity of the HC-3-binding groove, thereby playing a key role in HC-3 sensitivity and phosphorylation.


Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin.

  • Anja Schuetz‎ et al.
  • Structure (London, England : 1993)‎
  • 2007‎

Sirtuins are NAD(+)-dependent protein deacetylases and are emerging as molecular targets for the development of pharmaceuticals to treat human metabolic and neurological diseases and cancer. To date, several sirtuin inhibitors and activators have been identified, but the structural mechanisms of how these compounds modulate sirtuin activity have not yet been determined. We identified suramin as a compound that binds to human SIRT5 and showed that it inhibits SIRT5 NAD(+)-dependent deacetylase activity with an IC(50) value of 22 microM. To provide insights into how sirtuin function is altered by inhibitors, we determined two crystal structures of SIRT5, one in complex with ADP-ribose, the other bound to suramin. Our structural studies provide a view of a synthetic inhibitory compound in a sirtuin active site revealing that suramin binds into the NAD(+), the product, and the substrate-binding site. Finally, our structures may enable the rational design of more potent inhibitors.


The MLL1 trimeric catalytic complex is a dynamic conformational ensemble stabilized by multiple weak interactions.

  • Lilia Kaustov‎ et al.
  • Nucleic acids research‎
  • 2019‎

Histone H3K4 methylation is an epigenetic mark associated with actively transcribed genes. This modification is catalyzed by the mixed lineage leukaemia (MLL) family of histone methyltransferases including MLL1, MLL2, MLL3, MLL4, SET1A and SET1B. The catalytic activity of this family is dependent on interactions with additional conserved proteins, but the structural basis for subunit assembly and the mechanism of regulation is not well understood. We used a hybrid methods approach to study the assembly and biochemical function of the minimally active MLL1 complex (MLL1, WDR5 and RbBP5). A combination of small angle X-ray scattering, cross-linking mass spectrometry, nuclear magnetic resonance spectroscopy and computational modeling were used to generate a dynamic ensemble model in which subunits are assembled via multiple weak interaction sites. We identified a new interaction site between the MLL1 SET domain and the WD40 β-propeller domain of RbBP5, and demonstrate the susceptibility of the catalytic function of the complex to disruption of individual interaction sites.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: