Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Induction of the ChREBPβ Isoform Is Essential for Glucose-Stimulated β-Cell Proliferation.

  • Pili Zhang‎ et al.
  • Diabetes‎
  • 2015‎

Carbohydrate-responsive element-binding protein (ChREBP) is a glucose-sensing transcription factor required for glucose-stimulated proliferation of pancreatic β-cells in rodents and humans. The full-length isoform (ChREBPα) has a low glucose inhibitory domain (LID) that restrains the transactivation domain when glucose catabolism is minimal. A novel isoform of ChREBP (ChREBPβ) was recently described that lacks the LID domain and is therefore constitutively and more potently active. ChREBPβ has not been described in β-cells nor has its role in glucose-stimulated proliferation been determined. We found that ChREBPβ is highly expressed in response to glucose, particularly with prolonged culture in hyperglycemic conditions. In addition, small interfering RNAs that knocked down ChREBPβ transcripts without affecting ChREBPα expression or activity decreased glucose-stimulated expression of carbohydrate response element-containing genes and glucose-stimulated proliferation in INS-1 cells and in isolated rat islets. Quantitative chromatin immunoprecipitation, electrophoretic mobility shift assays, and luciferase reporter assays were used to demonstrate that ChREBP binds to a newly identified powerful carbohydrate response element in β-cells and hepatocytes, distinct from that in differentiated 3T3-L1 adipocytes. We conclude that ChREBPβ contributes to glucose-stimulated gene expression and proliferation in β-cells, with recruitment of ChREBPα to tissue-specific elements of the ChREBPβ isoform promoter.


Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism.

  • Anil Kumar‎ et al.
  • Diabetes‎
  • 2010‎

Rictor is an essential component of mammalian target of rapamycin (mTOR) complex (mTORC) 2, a kinase that phosphorylates and activates Akt, an insulin signaling intermediary that regulates glucose and lipid metabolism in adipose tissue, skeletal muscle, and liver. To determine the physiological role of rictor/mTORC2 in insulin signaling and action in fat cells, we developed fat cell-specific rictor knockout (FRic(-/-)) mice.


Activation of Nrf2 Is Required for Normal and ChREBPα-Augmented Glucose-Stimulated β-Cell Proliferation.

  • Anil Kumar‎ et al.
  • Diabetes‎
  • 2018‎

Patients with both major forms of diabetes would benefit from therapies that increase β-cell mass. Glucose, a natural mitogen, drives adaptive expansion of β-cell mass by promoting β-cell proliferation. We previously demonstrated that a carbohydrate response element-binding protein (ChREBPα) is required for glucose-stimulated β-cell proliferation and that overexpression of ChREBPα amplifies the proliferative effect of glucose. Here we found that ChREBPα reprogrammed anabolic metabolism to promote proliferation. ChREBPα increased mitochondrial biogenesis, oxygen consumption rates, and ATP production. Proliferation augmentation by ChREBPα required the presence of ChREBPβ. ChREBPα increased the expression and activity of Nrf2, initiating antioxidant and mitochondrial biogenic programs. The induction of Nrf2 was required for ChREBPα-mediated mitochondrial biogenesis and for glucose-stimulated and ChREBPα-augmented β-cell proliferation. Overexpression of Nrf2 was sufficient to drive human β-cell proliferation in vitro; this confirms the importance of this pathway. Our results reveal a novel pathway necessary for β-cell proliferation that may be exploited for therapeutic β-cell regeneration.


Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size.

  • Yanyun Gu‎ et al.
  • Diabetes‎
  • 2011‎

We examined the role of Rictor/mammalian target of rapamycin complex 2 (mTORC2), a key component of the phosphotidylinositol-3-kinase (PI3K)/mTORC2/AKT signaling pathway, in regulating both β-cell mass and function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: