Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 95 papers

Non-sequential and multi-step splicing of the dystrophin transcript.

  • Isabella Gazzoli‎ et al.
  • RNA biology‎
  • 2016‎

The dystrophin protein encoding DMD gene is the longest human gene. The 2.2 Mb long human dystrophin transcript takes 16 hours to be transcribed and is co-transcriptionally spliced. It contains long introns (24 over 10kb long, 5 over 100kb long) and the heterogeneity in intron size makes it an ideal transcript to study different aspects of the human splicing process. Splicing is a complex process and much is unknown regarding the splicing of long introns in human genes. Here, we used ultra-deep transcript sequencing to characterize splicing of the dystrophin transcripts in 3 different human skeletal muscle cell lines, and explored the order of intron removal and multi-step splicing. Coverage and read pair analyses showed that around 40% of the introns were not always removed sequentially. Additionally, for the first time, we report that non-consecutive intron removal resulted in 3 or more joined exons which are flanked by unspliced introns and we defined these joined exons as an exon block. Lastly, computational and experimental data revealed that, for the majority of dystrophin introns, multistep splicing events are used to splice out a single intron. Overall, our data show for the first time in a human transcript, that multi-step intron removal is a general feature of mRNA splicing.


Dendritic Cell-Specific Deletion of β-Catenin Results in Fewer Regulatory T-Cells without Exacerbating Autoimmune Collagen-Induced Arthritis.

  • C Henrique Alves‎ et al.
  • PloS one‎
  • 2015‎

Dendritic cells (DCs) are professional antigen presenting cells that have the dual ability to stimulate immunity and maintain tolerance. However, the signalling pathways mediating tolerogenic DC function in vivo remain largely unknown. The β-catenin pathway has been suggested to promote a regulatory DC phenotype. The aim of this study was to unravel the role of β-catenin signalling to control DC function in the autoimmune collagen-induced arthritis model (CIA). Deletion of β-catenin specifically in DCs was achieved by crossing conditional knockout mice with a CD11c-Cre transgenic mouse line. Bone marrow-derived DCs (BMDCs) were generated and used to study the maturation profile of these cells in response to a TLR2 or TLR4 ligand stimulation. CIA was induced by intra-dermal immunization with 100 μg chicken type II collagen in complete Freund's adjuvant on days 0 and 21. CIA incidence and severity was monitored macroscopically and by histology. The T cell profile as well as their cytokine production were analysed by flow cytometry. Lack of β-catenin specifically in DCs did not affect the spontaneous, TLR2- or TLR4-induced maturation and activation of BMDCs or their cytokine production. Moreover, no effect on the incidence and severity of CIA was observed in mice lacking β-catenin in CD11c+ cells. A decreased frequency of splenic CD3+CD8+ T cells and of regulatory T cells (Tregs) (CD4+CD25highFoxP3+), but no changes in the frequency of splenic Th17 (CCR6+CXCR3-CCR4+), Th2 (CCR6-CXCR3-CCR4+) and Th1 (CCR6-CXCR3+CCR4-) cells were observed in these mice under CIA condition. Furthermore, the expression of IL-17A, IL-17F, IL-22, IL-4 or IFNγ was also not affected. Our data indicate that ablation of β-catenin expression in DCs did not alter the course and severity of CIA. We conclude that although deletion of β-catenin resulted in a lower frequency of Tregs, this decrease was not sufficient to aggravate the onset and severity of CIA.


Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon.

  • Jacobus J Dudok‎ et al.
  • Neuroscience research‎
  • 2016‎

The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities.


Nonclinical Exon Skipping Studies with 2'-O-Methyl Phosphorothioate Antisense Oligonucleotides in mdx and mdx-utrn-/- Mice Inspired by Clinical Trial Results.

  • Maaike van Putten‎ et al.
  • Nucleic acid therapeutics‎
  • 2019‎

Duchenne muscular dystrophy is a severe, progressive muscle-wasting disease that is caused by mutations that abolish the production of functional dystrophin protein. The exon skipping approach aims to restore the disrupted dystrophin reading frame, to allow the production of partially functional dystrophins, such as found in the less severe Becker muscular dystrophy. Exon skipping is achieved by antisense oligonucleotides (AONs). Several chemical modifications have been tested in nonclinical and clinical trials. The morpholino phosphorodiamidate oligomer eteplirsen has been approved by the Food and Drug Administration, whereas clinical development with the 2'-O-methyl phosphorothioate (2OMePS) AON drisapersen was recently stopped. In this study, we aimed to study various aspects of 2OMePS AONs in nonclinical animal studies. We show that while efficiency of exon skipping restoration is comparable in young and older C57BL/10ScSn-Dmdmdx/J (mdx/BL10) mice, functional improvement was only observed for younger treated mice. Muscle quality did not affect exon skipping efficiency as exon skip and dystrophin levels were similar between mdx/BL10 and more severely affected, age-matched D2-mdx mice. We further report that treadmill running increases AON uptake and dystrophin levels in mdx/BL10 mice. Finally, we show that even low levels of exon skipping and dystrophin restoration are sufficient to significantly increase the survival of mdx-utrn-/- mice from 70 to 97 days.


Measuring clinical effectiveness of medicinal products for the treatment of Duchenne muscular dystrophy.

  • Stephen Lynn‎ et al.
  • Neuromuscular disorders : NMD‎
  • 2015‎

No abstract available


The Dynamics of Compound, Transcript, and Protein Effects After Treatment With 2OMePS Antisense Oligonucleotides in mdx Mice.

  • Ingrid E C Verhaart‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2014‎

Antisense-mediated exon skipping is currently in clinical development for Duchenne muscular dystrophy (DMD) to amend the consequences of the underlying genetic defect and restore dystrophin expression. Due to turnover of compound, transcript, and protein, chronic treatment with effector molecules (antisense oligonucleotides) will be required. To investigate the dynamics and persistence of antisense 2'-O-methyl phosphorothioate oligonucleotides, exon skipping, and dystrophin expression after dosing was concluded, mdx mice were treated subcutaneously for 8 weeks with 100 mg/kg oligonucleotides twice weekly. Thereafter, mice were sacrificed at different time points after the final injection (36 hours-24 weeks). Oligonucleotide half-life was longer in heart (~65 days) compared with that in skeletal muscle, liver, and kidney (~35 days). Exon skipping half-lives varied between 33 and 53 days, whereas dystrophin protein showed a long half-life (>100 days). Oligonucleotide and exon-skipping levels peaked in the first week and declined thereafter. By contrast, dystrophin expression peaked after 3-8 weeks and then slowly declined, remaining detectable after 24 weeks. Concordance between levels of oligonucleotides, exon skipping, and proteins was observed, except in heart, wherein high oligonucleotide levels but low exon skipping and dystrophin expression were seen. Overall, these results enhance our understanding of the pharmacokinetics and pharmacodynamics of 2'-O-methyl phosphorothioate oligos used for the treatment of DMD.Molecular Therapy-Nucleic Acids (2014) 3, e148; doi:10.1038/mtna.2014.1; published online 18 February 2014.


New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration.

  • Svitlana Pasteuning-Vuhman‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2017‎

Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways.-Pasteuning-Vuhman, S., Boertje-van der Meulen, J. W., van Putten, M., Overzier, M., ten Dijke, P., Kiełbasa, S. M., Arindrarto, W., Wolterbeek, R., Lezhnina, K. V., Ozerov, I. V., Aliper, A. M., Hoogaars, W. M., Aartsma-Rus, A., Loomans, C. J. M. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration.


A multicenter comparison of quantification methods for antisense oligonucleotide-induced DMD exon 51 skipping in Duchenne muscular dystrophy cell cultures.

  • Monika Hiller‎ et al.
  • PloS one‎
  • 2018‎

Duchenne muscular dystrophy is a lethal disease caused by lack of dystrophin. Skipping of exons adjacent to out-of-frame deletions has proven to restore dystrophin expression in Duchenne patients. Exon 51 has been the most studied target in both preclinical and clinical settings and the availability of standardized procedures to quantify exon skipping would be advantageous for the evaluation of preclinical and clinical data.


In vitro modelling of alveolar repair at the air-liquid interface using alveolar epithelial cells derived from human induced pluripotent stem cells.

  • Sander van Riet‎ et al.
  • Scientific reports‎
  • 2020‎

Research on acute and chronic lung diseases would greatly benefit from reproducible availability of alveolar epithelial cells (AEC). Primary alveolar epithelial cells can be derived from human lung tissue but the quality of these cells is highly donor dependent. Here, we demonstrated that culture of EpCAM+ cells derived from human induced pluripotent stem cells (hiPSC) at the physiological air-liquid interface (ALI) resulted in type 2 AEC-like cells (iAEC2) with alveolar characteristics. iAEC2 cells expressed native AEC2 markers (surfactant proteins and LPCAT-1) and contained lamellar bodies. ALI-iAEC2 were used to study alveolar repair over a period of 2 weeks following mechanical wounding of the cultures and the responses were compared with those obtained using primary AEC2 (pAEC2) isolated from resected lung tissue. Addition of the Wnt/β-catenin activator CHIR99021 reduced wound closure in the iAEC2 cultures but not pAEC2 cultures. This was accompanied by decreased surfactant protein expression and accumulation of podoplanin-positive cells at the wound edge. These results demonstrated the feasibility of studying alveolar repair using hiPSC-AEC2 cultured at the ALI and indicated that this model can be used in the future to study modulation of alveolar repair by (pharmaceutical) compounds.


Dystrophin deficiency leads to dysfunctional glutamate clearance in iPSC derived astrocytes.

  • Abdulsamie M Patel‎ et al.
  • Translational psychiatry‎
  • 2019‎

Duchenne muscular dystrophy (DMD) results, beside muscle degeneration in cognitive defects. As neuronal function is supported by astrocytes, which express dystrophin, we hypothesized that loss of dystrophin from DMD astrocytes might contribute to these cognitive defects. We generated cortical neuronal and astrocytic progeny from induced pluripotent stem cells (PSC) from six DMD subjects carrying different mutations and several unaffected PSC lines. DMD astrocytes displayed cytoskeletal abnormalities, defects in Ca+2 homeostasis and nitric oxide signaling. In addition, defects in glutamate clearance were identified in DMD PSC-derived astrocytes; these deficits were related to a decreased neurite outgrowth and hyperexcitability of neurons derived from healthy PSC. Read-through molecule restored dystrophin expression in DMD PSC-derived astrocytes harboring a premature stop codon mutation, corrected the defective astrocyte glutamate clearance and prevented associated neurotoxicity. We propose a role for dystrophin deficiency in defective astroglial glutamate homeostasis which initiates defects in neuronal development.


Longitudinal metabolomic analysis of plasma enables modeling disease progression in Duchenne muscular dystrophy mouse models.

  • Roula Tsonaka‎ et al.
  • Human molecular genetics‎
  • 2020‎

Duchenne muscular dystrophy is a severe pediatric neuromuscular disorder caused by the lack of dystrophin. Identification of biomarkers is needed to support and accelerate drug development. Alterations of metabolites levels in muscle and plasma have been reported in pre-clinical and clinical cross-sectional comparisons. We present here a 7-month longitudinal study comparing plasma metabolomic data in wild-type and mdx mice. A mass spectrometry approach was used to study metabolites in up to five time points per mouse at 6, 12, 18, 24 and 30 weeks of age, providing an unprecedented in depth view of disease trajectories. A total of 106 metabolites were studied. We report a signature of 31 metabolites able to discriminate between healthy and disease at various stages of the disease, covering the acute phase of muscle degeneration and regeneration up to the deteriorating phase. We show how metabolites related to energy production and chachexia (e.g. glutamine) are affected in mdx mice plasma over time. We further show how the signature is connected to molecular targets of nutraceuticals and pharmaceutical compounds currently in development as well as to the nitric oxide synthase pathway (e.g. arginine and citrulline). Finally, we evaluate the signature in a second longitudinal study in three independent mouse models carrying 0, 1 or 2 functional copies of the dystrophin paralog utrophin. In conclusion, we report an in-depth metabolomic signature covering previously identified associations and new associations, which enables drug developers to peripherally assess the effect of drugs on the metabolic status of dystrophic mice.


HIF2α activation and mitochondrial deficit due to iron chelation cause retinal atrophy.

  • Yang Kong‎ et al.
  • EMBO molecular medicine‎
  • 2023‎

Iron accumulation causes cell death and disrupts tissue functions, which necessitates chelation therapy to reduce iron overload. However, clinical utilization of deferoxamine (DFO), an iron chelator, has been documented to give rise to systemic adverse effects, including ocular toxicity. This study provided the pathogenic and molecular basis for DFO-related retinopathy and identified retinal pigment epithelium (RPE) as the target tissue in DFO-related retinopathy. Our modeling demonstrated the susceptibility of RPE to DFO compared with the neuroretina. Intriguingly, we established upregulation of hypoxia inducible factor (HIF) 2α and mitochondrial deficit as the most prominent pathogenesis underlying the RPE atrophy. Moreover, suppressing hyperactivity of HIF2α and preserving mitochondrial dysfunction by α-ketoglutarate (AKG) protects the RPE against lesions both in vitro and in vivo. This supported our observation that AKG supplementation alleviates visual impairment in a patient undergoing DFO-chelation therapy. Overall, our study established a significant role of iron deficiency in initiating DFO-related RPE atrophy. Inhibiting HIF2α and rescuing mitochondrial function by AKG protect RPE cells and can potentially ameliorate patients' visual function.


Peripheral blood transcriptome profiling enables monitoring disease progression in dystrophic mice and patients.

  • Mirko Signorelli‎ et al.
  • EMBO molecular medicine‎
  • 2021‎

DMD is a rare disorder characterized by progressive muscle degeneration and premature death. Therapy development is delayed by difficulties to monitor efficacy non-invasively in clinical trials. In this study, we used RNA-sequencing to describe the pathophysiological changes in skeletal muscle of 3 dystrophic mouse models. We show how dystrophic changes in muscle are reflected in blood by analyzing paired muscle and blood samples. Analysis of repeated blood measurements followed the dystrophic signature at five equally spaced time points over a period of seven months. Treatment with two antisense drugs harboring different levels of dystrophin recovery identified genes associated with safety and efficacy. Evaluation of the blood gene expression in a cohort of DMD patients enabled the comparison between preclinical models and patients, and the identification of genes associated with physical performance, treatment with corticosteroids and body measures. The presented results provide evidence that blood RNA-sequencing can serve as a tool to evaluate disease progression in dystrophic mice and patients, as well as to monitor response to (dystrophin-restoring) therapies in preclinical drug development and in clinical trials.


The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development.

  • Philip E Wagstaff‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.


CD4+ CCR6+ T cells, but not γδ T cells, are important for the IL-23R-dependent progression of antigen-induced inflammatory arthritis in mice.

  • Wida Razawy‎ et al.
  • European journal of immunology‎
  • 2020‎

IL-23 plays an important role in the development of arthritis and the IL-23 receptor (IL-23R) is expressed on different types of T cells. However, it is not fully clear which IL-23R+ T cells are critical in driving T cell-mediated synovitis. We demonstrate, using knock-in IL-23R-GFP reporter (IL-23RGFP/+ ) mice, that CD4+ CCR6+ T cells and γδ T cells, but not CD8+ T cells, express the IL-23R(GFP). During early arthritis, IL-23R(GFP)+ CD4+ CCR6+ T cells, but not IL-23R(GFP)+ γδ T cells, were present in the inflamed joints. IL-23RGFP/+ mice were bred as homozygotes to obtain IL-23RGFP/GFP (IL-23R deficient/IL-23R-/- ) mice, which express GFP under the IL-23R promotor. Arthritis progression and joint damage were significantly milder in IL-23R-/- mice, which revealed less IL-17A+ cells in their lymphoid tissues. Surprisingly, IL-23R-/- mice had increased numbers of IL-23R(GFP)+ CD4+ CCR6+ and CCR7+ CD4+ CCR6+ T cells in their spleen compared to WT, and IL-23 suppressed CCR7 expression in vitro. However, IL-23R(GFP)+ CD4+ CCR6+ T cells were present in the synovium of IL-23R-/- mice at day 4. Finally, adoptive transfer experiments revealed that CD4+ CCR6+ T cells and not γδ T cells drive arthritis progression. These data suggest that IL-23R-dependent T cell-mediated synovitis is dependent on CD4+ CCR6+ T cells and not on γδ T cells.


PINK1/PARKIN signalling in neurodegeneration and neuroinflammation.

  • Peter M J Quinn‎ et al.
  • Acta neuropathologica communications‎
  • 2020‎

Mutations in the PTEN-induced kinase 1 (PINK1) and Parkin RBR E3 ubiquitin-protein ligase (PARKIN) genes are associated with familial forms of Parkinson's disease (PD). PINK1, a protein kinase, and PARKIN, an E3 ubiquitin ligase, control the specific elimination of dysfunctional or superfluous mitochondria, thus fine-tuning mitochondrial network and preserving energy metabolism. PINK1 regulates PARKIN translocation in impaired mitochondria and drives their removal via selective autophagy, a process known as mitophagy. As knowledge obtained using different PINK1 and PARKIN transgenic animal models is being gathered, growing evidence supports the contribution of mitophagy impairment to several human pathologies, including PD and Alzheimer's diseases (AD). Therefore, therapeutic interventions aiming to modulate PINK1/PARKIN signalling might have the potential to treat these diseases. In this review, we will start by discussing how the interplay of PINK1 and PARKIN signalling helps mediate mitochondrial physiology. We will continue by debating the role of mitochondrial dysfunction in disorders such as amyotrophic lateral sclerosis, Alzheimer's, Huntington's and Parkinson's diseases, as well as eye diseases such as age-related macular degeneration and glaucoma, and the causative factors leading to PINK1/PARKIN-mediated neurodegeneration and neuroinflammation. Finally, we will discuss PINK1/PARKIN gene augmentation possibilities with a particular focus on AD, PD and glaucoma.


AAV-CRB2 protects against vision loss in an inducible CRB1 retinitis pigmentosa mouse model.

  • Thilo M Buck‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2021‎

Loss of Crumbs homolog 1 (CRB1) or CRB2 proteins in Müller cells or photoreceptors in the mouse retina results in a CRB dose-dependent retinal phenotype. In this study, we present a novel Müller cell-specific Crb1 KO Crb2 LowMGC retinitis pigmentosa mouse model (complete loss of CRB1 and reduced levels of CRB2 specifically in Müller cells). The Crb double mutant mice showed deficits in electroretinography, optokinetic head tracking, and retinal morphology. Exposure of retinas to low levels of dl-α-aminoadipate acid induced gliosis and retinal disorganization in Crb1 KO Crb2 LowMGC retinas but not in wild-type or Crb1-deficient retinas. Crb1 KO Crb2 LowMGC mice showed a substantial decrease in inner/outer photoreceptor segment length and optokinetic head-tracking response. Intravitreal application of rAAV vectors expressing human CRB2 (hCRB2) in Müller cells of Crb1 KO Crb2 LowMGC mice subsequently exposed to low levels of dl-α-aminoadipate acid prevented loss of vision, whereas recombinant adeno-associated viral (rAAV) vectors expressing human CRB1 (hCRB1) did not. Both rAAV vectors partially protected the morphology of the retina. The results suggest that hCRB expression in Müller cells is vital for control of retinal cell adhesion at the outer limiting membrane, and that the rAAV-cytomegalovirus (CMV)-hCRB2 vector is more potent than rAAV-minimal CMV (CMVmin)-hCRB1 in protection against loss of vision.


CRB1 is required for recycling by RAB11A+ vesicles in human retinal organoids.

  • Thilo M Buck‎ et al.
  • Stem cell reports‎
  • 2023‎

CRB1 gene mutations can cause early- or late-onset retinitis pigmentosa, Leber congenital amaurosis, or maculopathy. Recapitulating human CRB1 phenotypes in animal models has proven challenging, necessitating the development of alternatives. We generated human induced pluripotent stem cell (iPSC)-derived retinal organoids of patients with retinitis pigmentosa caused by biallelic CRB1 mutations and evaluated them against autologous gene-corrected hiPSCs and hiPSCs from healthy individuals. Patient organoids show decreased levels of CRB1 and NOTCH1 expression at the retinal outer limiting membrane. Proximity ligation assays show that human CRB1 and NOTCH1 can interact via their extracellular domains. CRB1 patient organoids feature increased levels of WDFY1+ vesicles, fewer RAB11A+ recycling endosomes, decreased VPS35 retromer complex components, and more degradative endolysosomal compartments relative to isogenic control organoids. Taken together, our data demonstrate that patient-derived retinal organoids enable modeling of retinal degeneration and highlight the importance of CRB1 in early endosome maturation receptor recycling in the retina.


Challenges of Assessing Exon 53 Skipping of the Human DMD Transcript with Locked Nucleic Acid-Modified Antisense Oligonucleotides in a Mouse Model for Duchenne Muscular Dystrophy.

  • Sarah Engelbeen‎ et al.
  • Nucleic acid therapeutics‎
  • 2023‎

Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy (DMD) patients to restore dystrophin expression by reframing the disrupted open reading frame of the DMD transcript. However, the treatment efficacy of the already conditionally approved AONs remains low. Aiming to optimize AON efficiency, we assessed exon 53 skipping of the DMD transcript with different chemically modified AONs, all with a phosphorothioate backbone: 2'-O-methyl (2'OMe), locked nucleic acid (LNA)-2'OMe, 2'-fluoro (FRNA), LNA-FRNA, αLNA-FRNA, and FANA-LNA-FRNA. Efficient exon 53 skipping was observed with the FRNA, LNA-FRNA, and LNA-2'OMe AONs in human control myoblast cultures. Weekly subcutaneous injections (50 mg/kg AON) for a duration of 6 weeks were well tolerated by hDMDdel52/mdx males. Treatment with the LNA-FRNA and LNA-2'OMe AONs resulted in pronounced exon 53 skip levels in skeletal muscles and heart up to 90%, but no dystrophin restoration was observed. This discrepancy was mainly ascribed to the strong binding nature of LNA modifications to RNA, thereby interfering with the amplification of the unskipped product resulting in artificial overamplification of the exon 53 skip product. Our study highlights that treatment effect on RNA and protein level should both be considered when assessing AON efficiency.


Smad6 determines BMP-regulated invasive behaviour of breast cancer cells in a zebrafish xenograft model.

  • Miriam de Boeck‎ et al.
  • Scientific reports‎
  • 2016‎

The transforming growth factor-β (TGF-β) family is known to play critical roles in cancer progression. While the dual role of TGF-β is well described, the function of bone morphogenetic proteins (BMPs) is unclear. In this study, we established the involvement of Smad6, a BMP-specific inhibitory Smad, in breast cancer cell invasion. We show that stable overexpression of Smad6 in breast cancer MCF10A M2 cells inhibits BMP signalling, thereby mitigating BMP6-induced suppression of mesenchymal marker expression. Using a zebrafish xenograft model, we demonstrate that overexpression of Smad6 potentiates invasion of MCF10A M2 cells and enhances the aggressiveness of breast cancer MDA-MB-231 cells in vivo, whereas a reversed phenotype is observed after Smad6 knockdown. Interestingly, BMP6 pre-treatment of MDA-MB-231 cells induced cluster formation at the invasive site in the zebrafish. BMP6 also stimulated cluster formation of MDA-MB-231 cells co-cultured on Human Microvascular Endothelial Cells (HMEC)-1 in vitro. Electron microscopy illustrated an induction of cell-cell contact by BMP6. The clinical relevance of our findings is highlighted by a correlation of high Smad6 expression with poor distant metastasis free survival in ER-negative cancer patients. Collectively, our data strongly indicates the involvement of Smad6 and BMP signalling in breast cancer cell invasion in vivo.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: